Rajilić-Stojanović M, de Vos WM (2014) The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev 38:996–1047
Article
CAS
Google Scholar
Zhang Q, Raoof M, Chen Y et al (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464:104–107
CAS
Article
Google Scholar
Nicholson JK, Holmes E, Kinross J et al (2012) Host-gut microbiota metabolic interactions. Science 336:1262–1267
CAS
Article
Google Scholar
Greenblum S, Turnbaugh PJ, Borenstein E (2012) Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc Natl Acad Sci U S A 109:594–599
CAS
Article
Google Scholar
Marchesi JR, Adams DH, Fava F et al (2016) The gut microbiota and host health: a new clinical frontier. Gut 65:330–339
Article
Google Scholar
Boyd SD, Liu Y, Wang C et al (2013) Human lymphocyte repertoires in ageing. Curr Opin Immunol 25:511–515
CAS
Article
Google Scholar
Macfarlane GT, Gibson GR, Cummings JH (1992) Comparison of fermentation reactions in different regions of the human colon. J Appl Bacteriol 72:57–64
CAS
Google Scholar
Steliou K, Boosalis MS, Perrine SP et al (2012) Butyrate histone deacetylase inhibitors. Biores Open Access 1:192–198
CAS
Article
Google Scholar
De Vadder F, Kovatcheva-Datchary P, Goncalves D et al (2014) Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156:84–96
Article
CAS
Google Scholar
Brown AJ, Goldsworthy SM, Barnes AA et al (2003) The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278:11312–11319
CAS
Article
Google Scholar
Tazoe H, Otomo Y, Kaji I et al (2008) Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. J Physiol Pharmacol 59(Suppl 2):251–262
Google Scholar
Duncan SH, Holtrop G, Lobley GE et al (2004) Contribution of acetate to butyrate formation by human faecal bacteria. Br J Nutr 91:915–923
CAS
Article
Google Scholar
Frost G, Sleeth ML, Sahuri-Arisoylu M et al (2014) The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun 5:3611
CAS
Article
Google Scholar
Bjerrum JT, Wang Y, Hao F et al (2015) Metabonomics of human fecal extracts characterize ulcerative colitis, Crohn’s disease and healthy individuals. Metabolomics 11:122–133
CAS
Article
Google Scholar
Belenguer A, Duncan SH, Calder AG et al (2006) Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl Environ Microbiol 72:3593–3599
CAS
Article
Google Scholar
Falony G, Vlachou A, Verbrugghe K, De Vuyst L (2006) Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose. Appl Environ Microbiol 72:7835–7841
CAS
Article
Google Scholar
Louis P, Young P, Holtrop G, Flint HJ (2010) Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA: acetate CoA-transferase gene. Environ Microbiol 12:304–314
CAS
Article
Google Scholar
Reichardt N, Duncan SH, Young P et al (2014) Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J 8:1323–1335
CAS
Article
Google Scholar
Vital M, Howe AC, Tiedje JM (2014) Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. MBio 5:e00889
Article
Google Scholar
Louis P, Duncan SH, McCrae SI et al (2004) Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. J Bacteriol 186:2099–2106
CAS
Article
Google Scholar
Louis P, Flint HJ (2017) Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol 19(1):29–41
CAS
Article
Google Scholar
Scott KP, Martin JC, Campbell G et al (2006) Whole-genome transcription profiling reveals genes up-regulated by growth on fucose in the human gut bacterium ‘Roseburia inulinivorans’. J Bacteriol 188:4340–4349
CAS
Article
Google Scholar
Hooper LV, Xu J, Falk PG et al (1999) A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc Natl Acad Sci USA 96:9833–9838
CAS
Article
Google Scholar
El Aidy S, Van den Abbeele P, Van de Wiele T et al (2013) Intestinal colonization: how key microbial players become established in this dynamic process. Bioessays 35:913–923
CAS
Google Scholar
Duncan SH, Belenguer A, Holtrop G et al (2007) Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Env Microbiol 73:1073–1078
CAS
Article
Google Scholar
Francois IEJA, Lescroart O, Veraverbeke WS et al (2012) Effects of a wheat bran extract containing arabinoxylan oligosaccharides on gastrointestinal health parameters in healthy adult human volunteers: a double-blind, randomised, placebo-controlled, cross-over trial. Br J Nutr 108:2229–2242
CAS
Article
Google Scholar
Halmos EP, Christophersen CT, Bird AR et al (2015) Diets that differ in their FODMAP content alter the colonic luminal microenvironment. Gut 64:93–100
CAS
Article
Google Scholar
Levitt MD, Bond JH Jr (1970) Volume, composition, and source of intestinal gas. Gastroenterology 59:921–929
CAS
Google Scholar
Cummings JH, Macfarlane GT (1991) The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol 70:443–459
CAS
Article
Google Scholar
Suarez F, Furne J, Springfield J, Levitt M (1997) Insights into human colonic physiology obtained from the study of flatus composition. Am J Physiol 272:G1028–G1033
CAS
Google Scholar
Gibson GR (1990) Physiology and ecology of the sulphate-reducing bacteria. J Appl Bacteriol 69:769–797
CAS
Article
Google Scholar
Wolf PG, Biswas A, Morales SE, Greening C, Gaskins HR (2016) H2 metabolism is widespread and diverse among human colonic microbes. Gut Microbes 3:235–245
Article
CAS
Google Scholar
Christl SU, Murgatroyd PR, Gibson GR, Cummings JH (1992) Production, metabolism, and excretion of hydrogen in the large intestine. Gastroenterology 102:1269–1277
CAS
Article
Google Scholar
Tomasova L, Konopelski P, Ufnal M (2016) Gut bacteria and hydrogen sulfide: the new old players in circulatory system homeostasis. Molecules 17:E1558
Article
CAS
Google Scholar
Gibson GR, Cummings JH, Macfarlane GT (1988) Use of a three-stage continuous culture system to study the effect of mucin on dissimilatory sulfate reduction and methanogenesis by mixed populations of human gut bacteria. Appl Environ Microbiol 54:2750–2755
CAS
Google Scholar
Lajoie SF, Bank S, Miller TL, Wolin MJ (1988) Acetate production from hydrogen and [13C] carbon dioxide by the microflora of human feces. Appl Environ Microbiol 54:2723–2727
CAS
Google Scholar
Christl SU, Gibson GR, Murgatroyd PR et al (1993) Impaired hydrogen metabolism in pneumatosis cystoides intestinalis. Gastroenterology 104:392–397
CAS
Article
Google Scholar
Shen X, Carlstrom M, Borniquel S et al (2013) Microbial regulation of host hydrogen sulfide bioavailability and metabolism. Free Radic Biol Med 60:195–200
CAS
Article
Google Scholar
Watanabe K, Mikamo H, Tanaka K (2007) [Clinical significance of sulfate-reducing bacteria for ulcerative colitis]. Nihon Rinsho 65:1337–1346.
Google Scholar
Rowan FE, Docherty NG, Coffey JC, O’Connell PR (2009) Sulphate-reducing bacteria and hydrogen sulphide in the aetiology of ulcerative colitis. Br J Surg 96:151–158
CAS
Article
Google Scholar
Flick JA, Hamilton SR, Rosales FJ, Perman JA (1990) Methane excretion and experimental colonic carcinogenesis. Dig Dis Sci 35:221–224
CAS
Article
Google Scholar
Macfarlane GT, Cummings JH, Allison C (1986) Protein degradation by human intestinal bacteria. Microbiology 132:1647–1656
CAS
Article
Google Scholar
Gibson SA, McFarlan C, Hay S, MacFarlane GT (1989) Significance of microflora in proteolysis in the colon. Appl Environ Microbiol 55:679–683
CAS
Google Scholar
Smith EA, Macfarlane GT (1996) Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism. J Appl Bacteriol 81:288–302
CAS
Article
Google Scholar
Russell WR, Duncan SH, Scobbie L, Duncan G, Cantlay L, Calder AG, Anderson SE, Flint HJ (2013) Major phenylpropanoid-derived metabolites in the human gut can arise from microbial fermentation of protein. Mol Nutr Food Res 57:523–535
CAS
Article
Google Scholar
Davila A-M, Blachier F, Gotteland M et al (2013) Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host. Pharmacol Res 68:95–107
CAS
Article
Google Scholar
Dai Z-L, Zhang J, Wu G, Zhu W-Y (2010) Utilization of amino acids by bacteria from the pig small intestine. Amino Acids 39:1201–1215
CAS
Article
Google Scholar
Dai Z-L, Li X-L, Xi P-B et al (2013) L-Glutamine regulates amino acid utilization by intestinal bacteria. Amino Acids 45:501–512
CAS
Article
Google Scholar
Hermanussen M, Gonder U, Jakobs C et al (2010) Patterns of free amino acids in German convenience food products: marked mismatch between label information and composition. Eur J Clin Nutr 64:88–98
CAS
Article
Google Scholar
Wu G, Wu Z, Dai Z et al (2013) Dietary requirements of ‘nutritionally non-essential amino acids’ by animals and humans. Amino Acids 44:1107–1113
CAS
Article
Google Scholar
Karau A, Grayson I (2014) Amino acids in human and animal nutrition. Adv Biochem Eng Biotechnol 143:189–228
CAS
Google Scholar
Hill MJ (1997) Intestinal flora and endogenous vitamin synthesis. Eur J Cancer Prev 6:S43–S45
Article
Google Scholar
Gustafsson BE, Daft FS, McDaniel EG et al (1962) Effects of vitamin K-active compounds and intestinal micro-organisms in vitamin K-deficient germfree rats. J Nutr 78:461–468
CAS
Article
Google Scholar
Frick PG, Riedler G, Brögli H (1967) Dose response and minimal daily requirement for vitamin K in man. J Appl Physiol 23:387–389
CAS
Article
Google Scholar
Le Blanc JG, Milani C, de Giori GS et al (2013) Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol 24:160–168
CAS
Article
Google Scholar
Magnúsdóttir S, Ravcheev D, de Crécy-Lagard V, Thiele I (2015) Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front Genet 6:148
Article
CAS
Google Scholar
Said HM (2013) Recent advances in transport of water-soluble vitamins in organs of the digestive system: a focus on the colon and the pancreas. Am J Physiol Gastrointest Liver Physiol 305:G601–G610
CAS
Article
Google Scholar
Kandell RL, Bernstein C (1991) Bile salt/acid induction of DNA damage in bacterial and mammalian cells: implications for colon cancer. Nutr Cancer 16:227–238
CAS
Article
Google Scholar
Bernstein H, Payne CM, Bernstein C et al (1999) Activation of the promoters of genes associated with DNA damage, oxidative stress, ER stress and protein malfolding by the bile salt, deoxycholate. Toxicol Lett 108:37–46
CAS
Article
Google Scholar
Begley M, Gahan CGM, Hill C (2005) The interaction between bacteria and bile. FEMS Microbiol Rev 29:625–651
CAS
Article
Google Scholar
Kurdi P, Kawanishi K, Mizutani K, Yokota A (2006) Mechanism of growth inhibition by free bile acids in lactobacilli and bifidobacteria. J Bacteriol 188:1979–1986
CAS
Article
Google Scholar
Kellogg TF (1971) Microbiological aspects of enterohepatic neutral sterol and bile acid metabolism. In: Fed. Proceedings. Fed. Am. Soc. Exp. Biol. pp 1808–1814
Jones BV, Begley M, Hill C et al (2008) Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc Natl Acad Sci USA 105:13580–13585
CAS
Article
Google Scholar
Van Eldere J, Celis P, De Pauw G et al (1996) Tauroconjugation of cholic acid stimulates 7 alpha-dehydroxylation by fecal bacteria. Appl Environ Microbiol 62:656–661
Google Scholar
Ridlon JM, Kang D-J, Hylemon PB (2006) Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47:241–259
CAS
Article
Google Scholar
Gustafsson BE, Angelin B, Einarsson K, Gustafsson JA (1977) Effects of cholesterol feeding on synthesis and metabolism of cholesterol and bile acids in germfree rats. J Lipid Res 18:717–721
CAS
Google Scholar
Mallonee DH, Hylemon PB (1996) Sequencing and expression of a gene encoding a bile acid transporter from Eubacterium sp. strain VPI 12708. J Bacteriol 178:7053–7058
CAS
Article
Google Scholar
Hussaini SH, Pereira SP, Murphy GM, Dowling RH (1995) Deoxycholic acid influences cholesterol solubilization and microcrystal nucleation time in gallbladder bile. Hepatology 22:1735–1744
CAS
Google Scholar
Ridlon JM, Wolf PG, Gaskins R (2016) Taurocholic acid metabolism by gut microbes and colon cancer. Gut Microbes 7:201–215
CAS
Article
Google Scholar
Hofmann AF (2004) Detoxification of lithocholic acid, a toxic bile acid: relevance to drug hepatotoxicity. Drug Metab Rev 36:703–722
CAS
Article
Google Scholar
Woollett LA, Buckley DD, Yao L et al (2003) Effect of ursodeoxycholic acid on cholesterol absorption and metabolism in humans. J Lipid Res 44:935–942
CAS
Article
Google Scholar
Garcia-Canaveras JC, Donato MT, Castell JV, Lahoz A (2012) Targeted profiling of circulating and hepatic bile acids in human, mouse, and rat using a UPLC-MRM-MS-validated method. J Lipid Res 53:2231–2241
CAS
Article
Google Scholar
Houten SM, Watanabe M, Auwerx J (2006) Endocrine functions of bile acids. EMBO J 25:1419–1425
CAS
Article
Google Scholar
Eloranta JJ, Kullak-Ublick GA (2008) The role of FXR in disorders of bile acid homeostasis. Physiology 23:286–295
CAS
Article
Google Scholar
Goodwin B, Jones SA, Price RR et al (2000) A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell 6:517–526
CAS
Article
Google Scholar
Pircher PC, Kitto JL, Petrowski ML et al (2003) Farnesoid X receptor regulates bile acid-amino acid conjugation. J Biol Chem 278:27703–27711
CAS
Article
Google Scholar
Song CS, Echchgadda I, Baek BS et al (2001) Dehydroepiandrosterone sulfotransferase gene induction by bile acid activated farnesoid X receptor. J Biol Chem 276:42549–42556
CAS
Article
Google Scholar
Hirokane H, Nakahara M, Tachibana S et al (2004) Bile acid reduces the secretion of very low density lipoprotein by repressing microsomal triglyceride transfer protein gene expression mediated by hepatocyte nuclear factor-4. J Biol Chem 279:45685–45692
CAS
Article
Google Scholar
Watanabe M, Houten SM, Wang L et al (2004) Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest 113:1408–1418
CAS
Article
Google Scholar
Katsuma S, Hirasawa A, Tsujimoto G (2005) Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem Biophys Res Commun 329:386–390
CAS
Article
Google Scholar
Stayrook KR, Bramlett KS, Savkur RS et al (2005) Regulation of carbohydrate metabolism by the farnesoid X receptor. Endocrinology 146:984–991
CAS
Article
Google Scholar
Watanabe M, Houten SM, Mataki C et al (2006) Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439:484–489
CAS
Article
Google Scholar
Swann JR, Tuohy KM, Lindfors P et al (2011) Variation in antibiotic-induced microbial recolonization impacts on the host metabolic phenotypes of rats. J Proteome Res 10:3590–3603
CAS
Article
Google Scholar
Pérez-Jiménez J, Fezeu L, Touvier M et al (2011) Dietary intake of 337 polyphenols in French adults. Am J Clin Nutr 93:1220–1228
Article
CAS
Google Scholar
Manach C, Scalbert A, Morand C et al (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747
CAS
Article
Google Scholar
Russell WR, Scobbie L, Chesson A et al (2008) Anti-inflammatory implications of the microbial transformation of dietary phenolic compounds. Nutr Cancer 60:636–642
CAS
Article
Google Scholar
Duda-Chodak A, Tarko T, Satora P, Sroka P (2015) Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. Eur J Nutr 54:325–341
CAS
Article
Google Scholar
Marín L, Miguélez EM, Villar CJ, Lombó F (2015) Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. Biomed Res Int 2015:905215
Article
CAS
Google Scholar
Braune A, Engst W, Blaut M (2015) Identification and functional expression of genes encoding flavonoid O-and C-glycosidases in intestinal bacteria. Environ Microbiol 18:2117–2129
Article
CAS
Google Scholar
Rechner AR, Smith MA, Kuhnle G et al (2004) Colonic metabolism of dietary polyphenols: influence of structure on microbial fermentation products. Free Radic Biol Med 36:212–225
CAS
Article
Google Scholar
Braune A, Blaut M (2016) Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut Microbes 7:216–234
CAS
Article
Google Scholar
Clavel T, Henderson G, Engst W et al (2006) Phylogeny of human intestinal bacteria that activate the dietary lignan secoisolariciresinol diglucoside. FEMS Microbiol Ecol 55:471–478
CAS
Article
Google Scholar
Clavel T, Lippman R, Gavini F et al (2007) Clostridium saccharogumia sp. nov. and Lactonifactor longoviformis gen. nov., sp. nov., two novel human faecal bacteria involved in the conversion of the dietary phytoestrogen secoisolariciresinol diglucoside. Syst Appl Microbiol 30:16–26
CAS
Article
Google Scholar
Quartieri A, García-Villalba R, Amaretti A et al (2016) Detection of novel metabolites of flaxseed lignans in vitro and in vivo. Mol Nutr Food Res 60:1590–1601
CAS
Article
Google Scholar
Gill CIR, McDougall GJ, Glidewell S et al (2010) Profiling of phenols in human fecal water after raspberry supplementation. J Agric Food Chem 58:10389–10395
CAS
Article
Google Scholar
Rowland I, Faughnan M, Hoey L et al (2003) Bioavailability of phyto-oestrogens. Br J Nutr 89(Suppl 1):S45–S58
CAS
Google Scholar
Tomas-Barberan F, Garcia-Villalba R, Quartieri A et al (2014) In vitro transformation of chlorogenic acid by human gut microbiota. Mol Nutr Food Res 58:1122–1131
CAS
Article
Google Scholar
Decroos K, Vanhemmens S, Cattoir S et al (2005) Isolation and characterisation of an equol-producing mixed microbial culture from a human faecal sample and its activity under gastrointestinal conditions. Arch Microbiol 183:45–55
CAS
Article
Google Scholar
Landete JM, Arqués J, Medina M et al (2015) Bioactivation of phytoestrogens: intestinal bacteria and health. Crit Rev Food Sci Nutr 56:1826–1843
Article
CAS
Google Scholar
Lampe JW (2009) Is equol the key to the efficacy of soy foods? Am J Clin Nutr 89:1664S–1667S
CAS
Article
Google Scholar
Tomas-Barberan FA, Gonzalez-Sarrias A, Garcia-Villalba R et al. (2016) Urolithins, the rescue of ‘old’ metabolites to understand a ‘new’ concept: metabotypes as a nexus between phenolic metabolism, microbiota dysbiosis and host health status. Mol Nutr Food Res 61:1500901
Article
CAS
Google Scholar
Matthies A, Blaut M, Braune A (2009) Isolation of a human intestinal bacterium capable of daidzein and genistein conversion. Appl Environ Microbiol 75:1740–1744
CAS
Article
Google Scholar
Bastos F, Bessa J, Pacheco CC et al (2002) Enrichment of microbial cultures able to degrade 1,3-dichloro-2-propanol: a comparison between batch and continuous methods. Biodegradation 13:211–220
CAS
Article
Google Scholar
Ziemer CJ (2014) Newly cultured bacteria with broad diversity isolated from eight-week continuous culture enrichments of cow feces on complex polysaccharides. Appl Environ Microbiol 80:574–585
Article
CAS
Google Scholar
Cole CB, Fuller R, Mallet AK, Rowland IR (1985) The influence of the host on expression of intestinal microbial enzyme activities involved in metabolism of foreign compounds. J Appl Bacteriol 59:549–553
CAS
Article
Google Scholar
Mallett AK, Rowland IR (1990) Bacterial enzymes: their role in the formation of mutagens and carcinogens in the intestine. Dig Dis 8(2):71–79
CAS
Article
Google Scholar
Dabek M, McCrae SI, Stevens VJ et al (2008) Distribution of β-glucosidase and β-glucuronidase activity and of β-glucuronidase gene gus in human colonic bacteria. FEMS Microbiol Ecol 66:487–495
CAS
Article
Google Scholar
McIntosh FM, Maison N, Holtrop G et al (2012) Phylogenetic distribution of genes encoding β-glucuronidase activity in human colonic bacteria and the impact of diet on faecal glycosidase activities. Environ Microbiol 14:1876–1887
CAS
Article
Google Scholar
El Kaoutari A, Armougom F, Leroy Q et al (2013) Development and Validation of a Microarray for the Investigation of the CAZymes Encoded by the Human Gut Microbiome. PLoS One 8:e84033
Article
CAS
Google Scholar
Roume H, Muller EEL, Cordes T et al (2013) A biomolecular isolation framework for eco-systems biology. ISME J 7:110–121
CAS
Article
Google Scholar
Wang W-L, Xu S-Y, Ren Z-G et al (2015) Application of metagenomics in the human gut microbiome. World J Gastroenterol 21:803–814
Article
Google Scholar
Wei X, Yan X, Zou D et al (2013) Abnormal fecal microbiota community and functions in patients with hepatitis B liver cirrhosis as revealed by a metagenomic approach. BMC Gastroenterol 13:175
Article
Google Scholar
Mohammed A, Guda C (2015) Application of a hierarchical enzyme classification method reveals the role of gut microbiome in human metabolism. BMC Genomics 16:1
Article
CAS
Google Scholar
Tasse L, Bercovici J, Pizzut-Serin S et al (2010) Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes. Genome Res 20:1605-1612-274
Article
CAS
Google Scholar
Walker AW, Duncan SH, Louis P, Flint HJ (2014) Phylogeny, culturing, and metagenomics of the approaches to unravel multi-species microbial community functioning. Comput Struct. Biotechnol J 13:24–32
Google Scholar
Abram F (2015) Systems-based approaches to unravel multi-species microbial community functioning. Comput Struct Biotechnol J 13:24–32
CAS
Article
Google Scholar
Turnbaugh PJ, Hamady M, Yatsunenko T et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484
CAS
Article
Google Scholar
Gosalbes MJ, Durbán A, Pignatelli M et al (2011) Metatranscriptomic approach to analyze the functional human gut microbiota. PLoS One 6:e17447
CAS
Article
Google Scholar
Xiong W, Abraham PE, Li Z et al (2015) Microbial metaproteomics for characterizing the range of metabolic functions and activities of human gut microbiota. Proteomics 15:3424–3438
CAS
Article
Google Scholar
Young JC, Pan C, Adams RM et al (2015) Metaproteomics reveals functional shifts in microbial and human proteins during a preterm infant gut colonization case. Proteomics 15:3463–3473
CAS
Article
Google Scholar
Verberkmoes NC, Russell AL, Shah M et al (2009) Shotgun metaproteomics of the human distal gut microbiota. ISME J 3:179–189
CAS
Article
Google Scholar
Kolmeder CA, De Been M, Nikkilä J et al (2012) Comparative metaproteomics and diversity analysis of human intestinal microbiota testifies for its temporal stability and expression of core functions. PLoS One 7:e29913
CAS
Article
Google Scholar
Kolmeder CA, de Vos WM (2014) Metaproteomics of our microbiome—developing insight in function and activity in man and model systems. J Proteomics 97:3–16
CAS
Article
Google Scholar
Lenz EM, Wilson ID (2007) Analytical strategies in metabonomics. J Proteome Res 6:443–458
CAS
Article
Google Scholar
Wang Y, Liu S, Hu Y et al (2015) Current state of the art of mass spectrometry-based metabolomics studies—a review focusing on wide coverage, high throughput and easy identification. RSC Adv 5:78728–78737
CAS
Article
Google Scholar
Emwas A-HM (2015) The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. Metabonomics Methods Protoc 1277:161–193
CAS
Google Scholar
Trygg J, Holmes E, Lundstedt T (2007) Chemometrics in metabonomics. J Proteome Res 6:469–479
CAS
Article
Google Scholar
Madsen R, Lundstedt T, Trygg J (2010) Chemometrics in metabolomics—a review in human disease diagnosis. Anal Chim Acta 659:23–33
CAS
Article
Google Scholar
Alonso A, Marsal S, Julia A (2015) Analytical methods in untargeted metabolomics: state of the art in 2015. Front Bioeng Biotechnol 3:23
Article
Google Scholar
Marcobal A, Yusufaly T, Higginbottom S et al (2015) Metabolome progression during early gut microbial colonization of gnotobiotic mice. Sci Rep 5:11589
CAS
Article
Google Scholar
Kok MGM, Ruijken MMA, Swann JR et al (2013) Anionic metabolic profiling of urine from antibiotic-treated rats by capillary electrophoresis-mass spectrometry. Anal Bioanal Chem 405:2585–2594
CAS
Article
Google Scholar
Wikoff WR, Anfora AT, Liu J et al (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA 106:3698–3703
CAS
Article
Google Scholar
Wang Z, Klipfell E, Bennett BJ et al (2011) Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57–63
CAS
Article
Google Scholar
Tannock GW, Lawley B, Munro K et al (2014) RNA-stable-isotope probing shows utilization of carbon from inulin by specific bacterial populations in the rat large bowel. Appl Environ Microbiol 80:2240–2247
Article
CAS
Google Scholar
Franzosa EA, Hsu T, Sirota-Madi A et al (2015) Sequencing and beyond: integrating molecular ‘omics’ for microbial community profiling. Nat Rev Microbiol 13:360–372
CAS
Article
Google Scholar
Manor O, Levy R, Borenstein E (2014) Mapping the inner workings of the microbiome: genomic- and metagenomic-based study of metabolism and metabolic interactions in the human microbiome. Cell Metab 20:742–752
CAS
Article
Google Scholar
Muñoz-Tamayo R, Laroche B, Walter E et al (2011) Kinetic modelling of lactate utilization and butyrate production by key human colonic bacterial species. FEMS Microbiol Ecol 76:615–624
Article
CAS
Google Scholar
Kettle H, Donnelly R, Flint HJ, Marion G (2014) pH feedback and phenotypic diversity within bacterial functional groups of the human gut. J Theor Biol 342:62–69
CAS
Article
Google Scholar
Kettle H, Louis P, Holtrop G et al (2015) Modelling the emergent dynamics and major metabolites of the human colonic microbiota. Environ Microbiol 17:1615–1630
CAS
Article
Google Scholar
Walker AW, Ince J, Duncan SH et al (2011) Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 5:220–230
CAS
Article
Google Scholar
Shashkova T, Popenko A, Tyakht A et al (2016) Agent based modeling of human gut microbiome interactions and perturbations. PLoS One 11:e0148386
Article
CAS
Google Scholar
Heinken A, Thiele I (2015) Systems biology of host-microbe metabolomics. Syst Biol Med 7:195–219
Google Scholar
Steinway SN, Biggs MB, Loughran TPJ et al (2015) Inference of network dynamics and metabolic interactions in the gut microbiome. PLoS Comput Biol 11:e1004338
Article
CAS
Google Scholar
Noecker C, Eng A, Srinivasan S et al (2016) Metabolic model-based integration of microbiome taxonomic and metabolomic profiles elucidates mechanistic links between ecological and metabolic variation. mSystems 1:e00013–15
Article
Google Scholar
Palsson BØ (2006) Systems biology: properties of reconstructed networks. Cambridge University Press, Cambridge
Google Scholar
Bordbar A, Monk JM, King ZA, Palsson BO (2014) Constraint-based models predict metabolic and associated cellular functions. Nat Rev Genet 15:107–120
CAS
Article
Google Scholar
Heinken A, Khan MT, Paglia G et al (2014) Functional metabolic map of Faecalibacterium prausnitzii, a beneficial human gut microbe. J Bacteriol 196:3289–3302
Article
CAS
Google Scholar
Bauer E, Laczny CC, Magnusdottir S et al (2015) Phenotypic differentiation of gastrointestinal microbes is reflected in their encoded metabolic repertoires. Microbiome 3:55
Article
Google Scholar
Heinken A, Sahoo S, Fleming RMT, Thiele I (2013) Systems-level characterization of a host-microbe metabolic symbiosis in the mammalian gut. Gut Microbes 4:28–40
Article
Google Scholar
Heinken A, Thiele I (2015) Systematic prediction of health-relevant human-microbial co-metabolism through a computational framework. Gut Microbes 6:120–130
CAS
Article
Google Scholar
Biggs MB, Medlock GL, Kolling GL, Papin JA (2015) Metabolic network modeling of microbial communities. Syst Biol Med 7:317–334
Google Scholar
Zomorrodi AR, Segre D (2016) Synthetic ecology of microbes: mathematical models and applications. J Mol Biol 428:837–861
CAS
Article
Google Scholar
Heinken A, Thiele I (2015) Anoxic conditions promote species-specific mutualism between gut microbes in silico. Appl Environ Microbiol 81:4049–4061
CAS
Article
Google Scholar
Lewis NE, Nagarajan H, Palsson BO (2012) Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat Rev Microbiol 10:291–305
CAS
Article
Google Scholar
Joyce SA, MacSharry J, Casey PG et al (2014) Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. Proc Natl Acad Sci USA 111:7421–7426
CAS
Article
Google Scholar
Louis P, Hold GL, Flint HJ (2014) The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12:661–672
CAS
Article
Google Scholar
Selma M V, Beltran D, Garcia-Villalba R et al (2014) Description of urolithin production capacity from ellagic acid of two human intestinal Gordonibacter species. Food Funct 5:1779–1784
CAS
Article
Google Scholar
Tomas-Barberan FA, Garcia-Villalba R, Gonzalez-Sarrias A et al (2014) Ellagic acid metabolism by human gut microbiota: consistent observation of three urolithin phenotypes in intervention trials, independent of food source, age, and health status. J Agric Food Chem 62:6535–6538
CAS
Article
Google Scholar
Couteau D, McCartney AL, Gibson GR et al (2001) Isolation and characterization of human colonic bacteria able to hydrolyse chlorogenic acid. J Appl Microbiol 90:873–881
CAS
Article
Google Scholar
Possemiers S, Rabot S, Espín JC et al (2008) Eubacterium limosum activates isoxanthohumol from hops (Humulus lupulus L.) into the potent phytoestrogen 8-prenylnaringenin in vitro and in rat intestine. J Nutr 138:1310–1316
CAS
Article
Google Scholar
Hanske L, Loh G, Sczesny S et al (2009) The bioavailability of apigenin-7-glucoside is influenced by human intestinal microbiota in rats. J Nutr 139:1095–1102
CAS
Article
Google Scholar
Matthies A, Loh G, Blaut M, Braune A (2012) Daidzein and genistein are converted to equol and 5-hydroxy-equol by human intestinal Slackia isoflavoniconvertens in gnotobiotic rats. J Nutr 142:40–46
CAS
Article
Google Scholar
Blaut M, Schoefer L, Braune A (2003) Transformation of flavonoids by intestinal microorganisms. Int J Vitam Nutr Res 73:79–87
CAS
Article
Google Scholar
Hanske L, Engst W, Loh G et al (2013) Contribution of gut bacteria to the metabolism of cyanidin 3-glucoside in human microbiota-associated rats. Br J Nutr 109:1433–1441
CAS
Article
Google Scholar
Corona G, Tzounis X, Assunta Dessi M et al (2006) The fate of olive oil polyphenols in the gastrointestinal tract: implications of gastric and colonic microflora-dependent biotransformation. Free Radic Res 40:647–658
CAS
Article
Google Scholar
Lockyer S, Corona G, Yaqoob P et al (2015) Secoiridoids delivered as olive leaf extract induce acute improvements in human vascular function and reduction of an inflammatory cytokine: a randomised, double-blind, placebo-controlled, cross-over trial. Br J Nutr 114:75–83
CAS
Article
Google Scholar
Fiorucci S (2015) Bile acids receptors regulate the integrity of gastrointestinal mucosa. LinkedIn SlideShare. http://www.slideshare.net/StefanoFiorucci/bile-acids-microbiota-and-nuclear-receptors. Slide 4. Accessed 23 Apr 2015