Skip to main content
Log in

Entzündung und Knochenmetabolismus

Inflammation and bone metabolism

  • Leitthema
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Zusammenfassung

Ein ausgeglichenes Verhältnis zwischen Knochenresorption und Knochenaufbau zeichnet einen gesunden Knochenmetabolismus aus. Osteoblasten sind für den Knochenaufbau und Osteoklasten für den Knochenabbau zuständig. Generell beeinflussen entzündliche, jedoch insbesondere chronisch-entzündliche Prozesse die Osteoblasten- und Osteoklastenfunktion über direkte, aber auch indirekte Mechanismen. Der Knochenmetabolismus wird durch Zytokine, Hormone und Wachstumsfaktoren verändert. Die Veränderungen am Knochen werden letztendlich durch die Knochenzellen selbst als Reaktion auf die Interaktion mit diesen Molekülen herbeigeführt. Zentral am Knochenstoffwechsel beteiligt ist das „receptor activator of nuclear factor-κB“(RANK)/RANK-Ligand(RANKL)/Osteoprotegerin(OPG)-System, das durch verschiedene entzündliche Prozesse beeinflusst wird. Üblicherweise resultiert eine (chronische) Entzündung in einem verstärkten Knochenabbau. In dieser Übersichtsarbeit werden die molekularen Mechanismen und pathophysiologischen Stoffwechselwege des Knochenmetabolismus unter dem Einfluss von Entzündungsprozessen dargestellt.

Abstract

A finely balanced relationship between bone resorption and bone formation is characteristic for a healthy bone metabolism. Osteoblasts are responsible for bone formation and osteoclasts for bone resorption. In general inflammatory and in particular chronic inflammatory processes influence osteoblast and osteoclast function directly or via indirect mechanisms. Bone metabolism can be influenced by the interaction of cytokines, hormones and growth factors with bone cells. A central factor involved in bone metabolism is the receptor activator of nuclear factor-κB (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system, which is influenced by different inflammatory processes. Usually, (chronic) inflammation results in increased bone loss. The molecular mechanisms and pathophysiological pathways of bone metabolism under the influence of inflammation are summarized in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Allali F, Breban M, Porcher R et al (2003) Increase in bone mineral density of patients with spondyloarthropathy treated with anti-tumour necrosis factor alpha. Ann Rheum Dis 62:347–349

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Catrina AI, af Klint E, Ernestam S et al (2006) Anti-tumor necrosis factor therapy increases synovial osteoprotegerin expression in rheumatoid arthritis. Arthritis Rheum 54:76–81

    Article  CAS  PubMed  Google Scholar 

  3. Dischereit G, Tarner IH, Muller-Ladner U et al (2013) Infliximab improves bone metabolism and bone mineral density in rheumatoid arthritis and ankylosing spondylitis: a prospective 2-year study. Clin Rheumatol 32:377–381

    Article  PubMed  Google Scholar 

  4. Dore RK, Cohen SB, Lane NE et al (2010) Effects of denosumab on bone mineral density and bone turnover in patients with rheumatoid arthritis receiving concurrent glucocorticoids or bisphosphonates. Ann Rheum Dis 69:872–875

    Article  CAS  PubMed  Google Scholar 

  5. Fleischmann RM, Halland AM, Brzosko M et al (2013) Tocilizumab inhibits structural joint damage and improves physical function in patients with rheumatoid arthritis and inadequate responses to methotrexate: LITHE study 2-year results. J Rheumatol 40:113–126

    Article  CAS  PubMed  Google Scholar 

  6. Hofbauer LC (2006) Pathophysiology of RANK ligand (RANKL) and osteoprotegerin (OPG). Ann Endocrinol (Paris) 67:139–141

    Google Scholar 

  7. Keystone EC, Kavanaugh AF, Sharp JT et al (2004) Radiographic, clinical, and functional outcomes of treatment with adalimumab (a human anti-tumor necrosis factor monoclonal antibody) in patients with active rheumatoid arthritis receiving concomitant methotrexate therapy: a randomized, placebo-controlled, 52-week trial. Arthritis Rheum 50:1400–1411

    Article  CAS  PubMed  Google Scholar 

  8. Kim H-R, Lee S-H, Kim H-Y et al (2006) Elevated serum levels of soluble receptor activator of nuclear factors-kappaB ligand (sRANKL) and reduced bone mineral density in patients with ankylosing spondylitis (AS). Rheumatology (Oxford) 45:1197–1200

  9. Kitaura H, Kimura K, Ishida M et al (2013) Immunological reaction in TNF-alpha-mediated osteoclast formation and bone resorption in vitro and in vivo. Clin Dev Immunol 2013:181849

    Article  PubMed Central  PubMed  Google Scholar 

  10. Lange U, Teichmann J, Muller-Ladner U et al (2005) Increase in bone mineral density of patients with rheumatoid arthritis treated with anti-TNF-alpha antibody: a prospective open-label pilot study. Rheumatology (Oxford) 44:1546–1548

  11. Lange U, Wettich T, Schneider C et al (2013) Wirkung einer IL-6R-Inhibition bei Patienten mit rheumatoider Arthritis auf den Knorpel- und Knochenmetabolismus sowie die Knochendichte. Osteologie Suppl 01:P25

    Google Scholar 

  12. Lipsky PE, Heijde DM van der, St Clair EW et al (2000) Infliximab and methotrexate in the treatment of rheumatoid arthritis. Anti-Tumor Necrosis Factor Trial in Rheumatoid Arthritis with Concomitant Therapy Study Group. N Engl J Med 343:1594–1602

    Article  CAS  PubMed  Google Scholar 

  13. Liu XH, Kirschenbaum A, Yao S et al (2006) Interactive effect of interleukin-6 and prostaglandin E2 on osteoclastogenesis via the OPG/RANKL/RANK system. Ann N Y Acad Sci 1068:225–233

    Article  CAS  PubMed  Google Scholar 

  14. Lubberts E, Koenders MI, Berg WB van den (2005) The role of T-cell interleukin-17 in conducting destructive arthritis: lessons from animal models. Arthritis Res Ther 7:29–37

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Luo X-H, Guo L-J, Xie H et al (2006) Adiponectin stimulates RANKL and inhibits OPG expression in human osteoblasts through the MAPK signaling pathway. J Bone Miner Res 21:1648–1656

    Article  CAS  PubMed  Google Scholar 

  16. Meier FMP, Frommer KW, Peters MA et al (2012) Visfatin/pre-B-cell colony-enhancing factor (PBEF), a proinflammatory and cell motility-changing factor in rheumatoid arthritis. J Biol Chem 287:28378–28385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Moschen AR, Geiger S, Gerner R et al (2010) Pre-B cell colony enhancing factor/NAMPT/visfatin and its role in inflammation-related bone disease. Mutat Res 690:95–101

    Article  CAS  PubMed  Google Scholar 

  18. Neumann E, Frommer KW, Vasile M et al (2011) Adipocytokines as driving forces in rheumatoid arthritis and related inflammatory diseases? Arthritis Rheum 63:1159–1169

    Article  CAS  PubMed  Google Scholar 

  19. Neumann E, Gay S, Muller-Ladner U (2005) The RANK/RANKL/osteoprotegerin system in rheumatoid arthritis: new insights from animal models. Arthritis Rheum 52:2960–2967

    Article  CAS  PubMed  Google Scholar 

  20. Neumann E, Schett G (2007) Bone metabolism: molecular mechanisms. Z Rheumatol 66:286–289

    Article  CAS  PubMed  Google Scholar 

  21. Rauner M, Stein N, Winzer M et al (2012) WNT5A is induced by inflammatory mediators in bone marrow stromal cells and regulates cytokine and chemokine production. J Bone Miner Res 27:575–585

    Article  CAS  PubMed  Google Scholar 

  22. Sato K, Suematsu A, Okamoto K et al (2006) Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med 203:2673–2682

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Schett G, Kiechl S, Weger S et al (2006) High-sensitivity C-reactive protein and risk of nontraumatic fractures in the Bruneck study. Arch Intern Med 166:2495–2501

    Article  CAS  PubMed  Google Scholar 

  24. Schett G, Sieper J (2009) Inflammation and repair mechanisms. Clin Exp Rheumatol 27:S33–S35

    CAS  PubMed  Google Scholar 

  25. Smolen JS, Avila JCM, Aletaha D (2012) Tocilizumab inhibits progression of joint damage in rheumatoid arthritis irrespective of its anti-inflammatory effects: disassociation of the link between inflammation and destruction. Ann Rheum Dis 71:687–693

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Takayanagi H, Ogasawara K, Hida S et al (2000) T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 408:600–605

    Article  CAS  PubMed  Google Scholar 

  27. Thommesen L, Stunes AK, Monjo M et al (2006) Expression and regulation of resistin in osteoblasts and osteoclasts indicate a role in bone metabolism. J Cell Biochem 99:824–834

    Article  CAS  PubMed  Google Scholar 

  28. Wong PKK, Quinn JMW, Sims NA et al (2006) Interleukin-6 modulates production of T lymphocyte-derived cytokines in antigen-induced arthritis and drives inflammation-induced osteoclastogenesis. Arthritis Rheum 54:158–168

    Article  CAS  PubMed  Google Scholar 

  29. Xie H, Tang S-Y, Luo X-H et al (2007) Insulin-like effects of visfatin on human osteoblasts. Calcif Tissue Int 80:201–210

    Article  CAS  PubMed  Google Scholar 

  30. Yamaguchi N, Kukita T, Li Y-J et al (2008) Adiponectin inhibits induction of TNF-alpha/RANKL-stimulated NFATc1 via the AMPK signaling. FEBS Lett 582:451–456

    Article  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. E. Neumann, U. Müller-Ladner und K.W. Frommer geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Neumann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neumann, E., Müller-Ladner, U. & Frommer, K. Entzündung und Knochenmetabolismus. Z. Rheumatol. 73, 342–348 (2014). https://doi.org/10.1007/s00393-013-1288-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-013-1288-5

Schlüsselwörter

Keywords

Navigation