Skip to main content
Log in

Impact of obstructive and central apneas on ventricular repolarisation: lessons learned from studies in man and pigs

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

Sleep apnea (SA) is associated with sudden cardiac death. Compared to central apneas, obstructive apneas are associated with negative intrathoracic pressure swings inducing autonomic imbalance, which may disturb ventricular repolarisation resulting in arrhythmias.

Objectives

To identify the influence of obstructive apneas versus central apneas on ventricular repolarisation.

Methods

In 14 patients with SA, duration (RT-intervals) and dispersion of ventricular repolarisation [Tpeak-to-Tend-interval (TpTe)] were determined during central apneas compared to obstructive apneas. To identify mechanisms, hypoxia alone or hypoxia with applied negative thoracic pressure was applied in a pig model for SA before and after atropine (n = 7), atenolol (n = 5) and sympathetic renal denervation (RDN, n = 7).

Results

In patients with SA, obstructive apneas during sleep were always associated with a prolongation of RT- as well as TpTe intervals. By contrast central apneas did not affect ventricular repolarisation significantly in the same patients. In the pig model for SA, 2 min of acute tracheal occlusion with applied negative thoracic pressure resulted in a prolongation in RT- and TpTe-interval. These changes in ventricular repolarisation could be inhibited by atenolol as well as by RDN and were not influenced by parasympathetic blockade by atropine. By contrast hypoxia alone did not affect ventricular repolarisation.

Conclusions

Intrathoracic pressure swings during obstructive apneas contribute to changes in ventricular repolarisation, which are not observed with central apneas. These changes are mainly driven by sympathetic activation and may represent mechanisms for increased occurrence of sudden cardiac death in obstructive SA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

SA:

Sleep apnea

SCD:

Sudden cardiac death

CPAP:

Continuous positive airway pressure

NTP:

Negative tracheal pressure

AHI:

Apnea hypopnea index

ASV:

Adaptive servoventilation

References

  1. Bradley TD, Floras JS (2009) Obstructive sleep apnoea and its cardiovascular consequences. Lancet 373:82–93

    Article  PubMed  Google Scholar 

  2. Linz D, Woehrle H, Bitter T, Fox H, Cowie MR, Böhm M, Oldenburg O (2015) The importance of sleep-disordered breathing in cardiovascular disease. Clin Res Cardiol 104:705–718

    Article  PubMed  Google Scholar 

  3. Linz D, Linz B, Hohl M, Böhm M (2015) Atrial arrhythmogenesis in obstructive sleep apnea: therapeutic implications. Sleep Med Rev. doi:10.1016/j.smrv.2015.03.003

    PubMed  Google Scholar 

  4. Marin JM, Carrizo SJ, Vicente E, Agusti AG (2005) Long-term cardiovascular outcomes in men with obstructive sleep apnoea–hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet 365:1046–1053

    Article  PubMed  Google Scholar 

  5. Bitter T, Westerheide N, Prinz C, Hossain MS, Vogt J, Langer C, Horstkotte D, Oldenburg O (2011) Cheyne–Stokes respiration and obstructive sleep apnoea are independent risk factors for malignant ventricular arrhythmias requiring appropriate cardioverter-defibrillator therapies in patients with congestive heart failure. Eur Heart J 32:61–74

    Article  PubMed  Google Scholar 

  6. Gami AS, Howard DE, Olson EJ, Somers VK (2005) Day–night pattern of sudden death in obstructive sleep apnea. N Engl J Med 352:1206–1214

    Article  CAS  PubMed  Google Scholar 

  7. Rossi VA, Stoewhas AC, Camen G, Steffel J, Bloch KE, Stradling JR, Kohler M (2012) The effects of continuous positive airway pressure therapy withdrawal on cardiac repolarization: data from a randomized controlled trial. Eur Heart J 33:2206–2212

    Article  PubMed  Google Scholar 

  8. Ryan CM, Juvet S, Leung R, Bradley TD (2008) Timing of nocturnal ventricular ectopy in heart failure patients with sleep apnea. Chest 133:934–940

    Article  PubMed  Google Scholar 

  9. Ryan CM, Usui K, Floras JS, Bradley TD (2005) Effect of continuous positive airway pressure on ventricular ectopy in heart failure patients with obstructive sleep apnoea. Thorax 60:781–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Leung RS, Diep TM, Bowman ME, Lorenzi-Filho G, Bradley TD (2004) Provocation of ventricular ectopy by Cheyne–Stokes respiration in patients with heart failure. Sleep 27:1337–1343

    PubMed  Google Scholar 

  11. Kasai T, Bradley TD (2001) Obstructive sleep apnea and heart failure: pathophysiologic and therapeutic implications. J Am Coll Cardiol 57:119–127

    Article  Google Scholar 

  12. Merri M, Alberti M, Moss AJ (1993) Dynamic analysis of ventricular repolarization duration from 24-hour Holter recordings. IEEE Trans Biomed Eng 40:1219–1225

    Article  CAS  PubMed  Google Scholar 

  13. Bazett HC (1920) An analysis of time relations of electrocardiograms. Heart 7:353–370

    Google Scholar 

  14. Linz D, Schotten U, Neuberger HR, Böhm M, Wirth K (2011) Negative tracheal pressure during obstructive respiratory events promotes atrial fibrillation by vagal activation. Heart Rhythm 8:1436–1443

    Article  PubMed  Google Scholar 

  15. Linz D, Mahfoud F, Schotten U, Ukena C, Neuberger HR, Wirth K, Böhm M (2012) Renal sympathetic denervation suppresses postapneic blood pressure rises and atrial fibrillation in a model for sleep apnea. Hypertension 60:172–178

    Article  CAS  PubMed  Google Scholar 

  16. Linz D, Mahfoud F, Schotten U, Ukena C, Hohl M, Neuberger HR, Wirth K, Böhm M (2013) Renal sympathetic denervation provides ventricular rate control but does not prevent atrial electrical remodeling during atrial fibrillation. Hypertension 61:225–231

    Article  CAS  PubMed  Google Scholar 

  17. Elming H, Brendorp B, Kober L, Sahebzadah N, Torp-Petersen C (2002) QTc interval in the assessment of cardiac risk. Card Electrophysiol Rev 6:289–294

    Article  PubMed  Google Scholar 

  18. Viskin S (1999) Long QT syndromes and torsade de pointes. Lancet 354:1625–1633

    Article  CAS  PubMed  Google Scholar 

  19. Topilski I, Rogowski O, Rosso R, Justo D, Copperman Y, Glikson M, Belhassen B, Hochenberg M, Viskin S (2007) The morphology of the QT interval predicts torsade de pointes during acquired bradyarrhythmias. J Am Coll Cardiol 49:320–328

    Article  PubMed  Google Scholar 

  20. Antzelevitch C (2006) Cellular basis for the repolarization waves of the ECG. Ann N Y Acad Sci 1080:268–281

    Article  PubMed  PubMed Central  Google Scholar 

  21. Xia Y, Liang Y, Kongstad O, Holm M, Olsson B, Yuan S (2005) Tpeak-Tend interval as an index of global dispersion of ventricular repolarization: evaluations using monophasic action potential mapping of the epi- and endocardium in swine. J Interv Card Electrophysiol 14:79–87

    Article  PubMed  Google Scholar 

  22. Panikkath R, Reinier K, Uy-Evanado A, Teodorescu C, Hattenhauer J, Mariani R, Gunson K, Jui J, Chugh SS (2011) Prolonged Tpeak-to-Tend interval on the resting ECG is associated with increased risk of sudden cardiac death. Circ Arrhythm Electrophysiol 4:441–447

    Article  PubMed  PubMed Central  Google Scholar 

  23. Camen G, Clarenbach CF, Stöwhas AC, Rossi VA, Sievi NA, Stradling JR, Kohler M (2013) The effects of simulated obstructive apnea and hypopnea on arrhythmic potential in healthy subjects. Eur J Appl Physiol 113:489–496

    Article  PubMed  Google Scholar 

  24. Schlatzer C, Schwarz EI, Sievi NA, Clarenbach CF, Gaisl T, Haegeli LM, Duru F, Stradling JR, Kohler M (2015) Intrathoracic pressure swings induced by simulated obstructive sleep apnoea promote arrhythmias in paroxysmal atrial fibrillation. Europace. doi:10.1093/europace/euv122

    Google Scholar 

  25. Somers VK, Dyken ME, Skinner JL (1993) Autonomic and hemodynamic responses and interactions during the Mueller maneuver in humans. J Auton Nerv Syst 44:253–259

    Article  CAS  PubMed  Google Scholar 

  26. Gillis AM, Stoohs R, Guilleminault C (1991) Changes in the QT interval during obstructive sleep apnea. Sleep 14:346–350

    CAS  PubMed  Google Scholar 

  27. Kohler M, Pepperell JC, Casadei B, Craig S, Crosthwaite N, Stradling JR, Davies RJ (2008) CPAP and measures of cardiovascular risk in males with OSAS. Eur Respir J 32:1488–1496

    Article  CAS  PubMed  Google Scholar 

  28. Narkiewicz K, van de Borne PJ, Cooley RL, Dyken ME, Somers VK (1998) Sympathetic activity in obese subjects with and without obstructive sleep apnea. Circulation 98:772–776

    Article  CAS  PubMed  Google Scholar 

  29. Somers VK, Dyken ME, Mark AL, Abboud FM (1993) Sympathetic-nerve activity during sleep in normal subjects. N Engl J Med 328:303–307

    Article  CAS  PubMed  Google Scholar 

  30. Baumert M, Schlaich MP, Nalivaiko E, Lambert E, Sari CI, Kaye DM, Elser MD, Sanders P, Lambert G (2011) Relation between QT interval variability and cardiac sympathetic activity in hypertension. Am J Physiol Heart Circ Physiol 300:1412–1417

    Article  Google Scholar 

  31. Yagishita D, Chui RW, Yamakawa K, Rajendran PS, Ajijola OA, Nakamura K, So EL, Mahajan A, Shivkumar K, Vaseghi M (2015) Sympathetic nerve stimulation, not circulating norepinephrine, modulates T-peak to T-end interval by increasing global dispersion of repolarization. Circ Arrhythm Electrophysiol 8:174–185

    Article  CAS  PubMed  Google Scholar 

  32. Linz D, Hohl M, Nickel A, Mahfoud F, Wagner M, Ewen S, Schotten U, Wirth K, Böhm M (2013) Effect of renal denervation on neurohumoral activation triggering atrial fibrillation in obstructive sleep apnea. Hypertension 62:767–774

    Article  CAS  PubMed  Google Scholar 

  33. Cowie MR, Woehrle H, Wegscheider K, Angermann C, d’Ortho MP, Erdmann E, Levy P, Simonds AK, Somers VK, Zannad F, Teschler H (2015) Adaptive servo-ventilation for central sleep apnea in systolic heart failure. N Engl J Med 373:1095–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Naughton MT (2012) Cheyne–Stokes respiration: friend or foe? Thorax 67:357–360

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Jeannette Zimolong and Kathrin Weber for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Linz.

Ethics declarations

Funding sources

D.L. and M.H. were supported by HOMFOR 2013/2014, the Else Kröner-Fresenius Foundation, the Deutsche Herzstiftung and the Deutsche Gesellschaft für Kardiologie.

Conflicts of interest

None.

Ethical approval

All analysis of clinical data and animal studies were approved by the local ethical committee and the local Institutional animal use and care committee, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linz, D., Denner, A., Illing, S. et al. Impact of obstructive and central apneas on ventricular repolarisation: lessons learned from studies in man and pigs. Clin Res Cardiol 105, 639–647 (2016). https://doi.org/10.1007/s00392-016-0961-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-016-0961-5

Keywords

Navigation