Skip to main content

Cardiovascular Physiology in Infants, Children, and Adolescents

  • Living reference work entry
  • First Online:
Pediatric and Congenital Cardiology, Cardiac Surgery and Intensive Care

Abstract

There are significant differences in the cardiovascular physiology between the neonates, infants, children, and the adolescent. The fetal circulation is a parallel circulation and is shunt dependent. The fetal hemoglobin (HbF) plays a key role in oxygen uptake from the placenta and delivery to the fetal tissues. Important and radical cardiorespiratory transitions occur from the fetal to the neonatal stage. Immediate adaptation must occur at birth for the lungs to take over the function of placenta. All fetal shunts cease to exist and a new circulation in series begins in the newborn baby. The pulmonary vascular resistance drops dramatically in the first hours of life starting with the first breath. It reaches adult levels by 4–6 months. From the fetal to the adolescent life, the cardiac output (CO) steadily increases. The cardiac index (CI) peaks at around 10 years of life after which it steadily declines. Adult hemoglobin (HbA) completely replaces fetal hemoglobin during the first 6–12 months of life. Throughout life, major factors determining cardiac output are – heart rate, preload, afterload, and myocardial contractility. The neonatal myocardium is less compliant. While increasing the heart rate is a physiological mechanism to increase cardiac output for a neonate, older child or adolescent relies primarily on increasing stroke volume. The progressive changes in anatomy and physiology which take place between birth and adolescence result in some electrocardiographic (ECG) features which differ significantly from the normal adult pattern and vary according to the age of the child. In the normal circulation, it is the venous return that determines cardiac output. Concept of mean systemic filling pressure and factors influencing it are discussed. Understanding of oxygen delivery (DO2) and consumption (VO2) is important in the management of critically ill child. Pulmonary blood flow (PBF) and pulmonary vascular resistance (PVR) affect cardiovascular performance. Some of the key aspects of cardiopulmonary interactions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Rudolph AM (1979) Fetal and neonatal pulmonary circulation. Annu Rev Physiol 41:383–395

    Article  CAS  Google Scholar 

  2. Dawes G (1968) Fetal and neonatal physiology, vol. 1968. Year Book Medical Publishers, Chicago, p 98

    Google Scholar 

  3. Rudolph AM, Heymann MA, Lewis AB (1977) Physiology and pharmacology of the pulmonary circulation in the fetus and newborn. In: Hodson WA (ed) Lung biology in health and disease. Development of the lung. Dekker, New York, pp 497–523

    Google Scholar 

  4. Kirkpatrick SE, Pitlick PT, Naliboff J, Friedman WF (1976) Frank-Starling relationship as an important determinant of fetal cardiac output. Am J Phys 231:495–500

    Article  CAS  Google Scholar 

  5. Guyton AC (2006) Medical physiology. In: Chapter 83: Fetal and neonatal physiology, 11th edn

    Google Scholar 

  6. Alyn IB, Baker LK (1992) Cardiovascular anatomy and physiology of the fetus, neonate, infant child, and adolescent. J Cardiovasc Nurs 6(3):1–11

    Article  CAS  Google Scholar 

  7. Price JF (2011) Unique aspects of heart failure in the neonate. In: Shaddy RE (ed) Text book of Heart failure in congenital heart disease: from fetus to adult, pp 21–42

    Google Scholar 

  8. Romero T, Covell J, Friedman WF (1972) A comparison of pressure-volume relations of the fetal, newborn, and adult heart. Am J Phys 222(5):1285–1290

    Article  CAS  Google Scholar 

  9. Thomas C, Lumb AB (2012) Continuing education in anaesthesia, critical care & pain. 12(5)

    Google Scholar 

  10. Desai A, Casanueva L, Macrae D (2018) Paediatric cardiac intensive care. In: Valchanov K, Jones N, Hogue C (eds) Core topics in cardiothoracic critical care. Cambridge University Press, pp 418–426

    Chapter  Google Scholar 

  11. Emmanouilides GC, Moss AJ, Michelle Monset-Couchard BA, Marcano and B. Rzeznic. (1970) Cardiac output in newborn infants. Biol Neonate 15:186–197

    Article  CAS  Google Scholar 

  12. Wolf AR, Humphry AT (2014) Limitations and vulnerabilities of the neonatal cardiovascular system: considerations for anesthetic management. Paediatr Anaesth 24(1):5–9

    Article  Google Scholar 

  13. Marijianowski MM, van der Loos CM, Mohrschladt MF et al (1994) The neonatal heart has a relatively high content of total collagen and type I collagen, a condition that may explain the less compliant state. J Am Coll Cardiol 23:1204–1208

    Article  CAS  Google Scholar 

  14. Kozak-Barany A, Jokinen E, Rantonen T et al (2000) Efficiency of left ventricular diastolic function increases in healthy full-term infants during the first months of life: a prospective follow-up study. Early Hum Dev 57:49–59

    Article  CAS  Google Scholar 

  15. Schroder EA, Wei Y, Satin J (2006) The developing cardiac myocyte: maturation of excitability and excitation-contraction coupling. Ann N Y Acad Sci 1080:63–75

    Article  CAS  Google Scholar 

  16. Poindexter BJ, Smith JR, Buja LM et al (2001) Calcium signaling mechanisms in dedifferentiated cardiac myocytes: comparison with neonatal and adult cardiomyocytes. Cell Calcium 30:373–382

    Article  CAS  Google Scholar 

  17. Klabunde RE (2012) Cardiovascular physiology concepts, 2nd edn. Textbook published by Lippincott Williams & Wilkins

    Google Scholar 

  18. Sproul A, Simpson E (1964) Stroke volume and related hemodynamic data in normal children. Pediatrics 33:912–918

    Article  CAS  Google Scholar 

  19. Adapted from:Bernstein D (2011) History and physical examination. In: Kliegman RM et al (eds) Nelson textbook of Pediatrics, 19th edn. Saunders Elsevier, Philadelhia, pp 1529–1536

    Chapter  Google Scholar 

  20. Hazinski MF (1999) Cardiovascular disorders. In: Hazinski MF (ed) Manual of pediatric critical care. Mosby-Year Book, St Louis, p 112

    Google Scholar 

  21. de Simone G, Devereux RB, Daniels SR et al (1997) Stroke volume and cardiac output in normotensive children and adults. Assessment of relations with body size and impact of overweight. Circulation 95(7):1837–1843

    Article  Google Scholar 

  22. Smith’s Anesthesia for Infants and Children. 8th edition. 2011. pp 87–97

    Google Scholar 

  23. Cote C, Lerman J, Todres ID (2009) A practice of Anesthesia for infants and children, 4th edn. Saunders-Elsevier, Philadelphia, pp 364–365

    Google Scholar 

  24. Southall DP, Richards J, Mitchell P, Brown DJ, Johnston PG, Shinebourne EA (1980) Study of cardiac rhythm in healthy newborn infants. Br Heart J 43(1):14–20

    Article  CAS  Google Scholar 

  25. Rijnbeek PR, Witsenburg M, Schrama E, Hess J, Kors JA (2001) New normal limits for the paediatric electrocardiogram. Eur Heart J 22(8):702–711

    Article  CAS  Google Scholar 

  26. Davignon A, Rautaharju P, Boisselle E et al (1980) Normal ECG standards for infants and children. Pediatr Cardiol 1:123–131

    Article  Google Scholar 

  27. Wilson WC, Benumof JL (2007) Physiology of the airway. In: Hagberg CA (ed) Benumof’s airway management. Philadelphia, Mosby Elsevier, pp 115–163

    Chapter  Google Scholar 

  28. West JB (1970) Ventilation/blood flow and gas exchange, 4th edn. Blackwell Scientific, Oxford

    Google Scholar 

  29. Simmons DH, Linde LM, Miller JJ, O’Reilly RJ (1961) Relation between lung volume and pulmonary vascular resistance. Circ Res 9:465–471

    Article  Google Scholar 

  30. Barnes PJ, Liu SF (1995) Regulation of pulmonary vascular tone. Pharmacol Rev 47:87–131

    CAS  Google Scholar 

  31. Kadowitz PJ, Hyman AL (1973) Effect of sympathetic nerve stimulation on pulmonary vascular resistance in the dog. Circ Res 32:221–227

    Article  CAS  Google Scholar 

  32. Weir EK, Archer SL (1995) The mechanism of acute hypoxic pulmonary vasoconstriction: the tale of two channels. FASEB J 9(2):183–189

    Article  CAS  Google Scholar 

  33. Marshall C, Marshall B (1983) Site and sensitivity for stimulation of hypoxic pulmonary vasoconstriction. J Appl Physiol 55:711–716

    Article  CAS  Google Scholar 

  34. Dawson CA (1984) Role of pulmonary vasomotion in physiology of the lung. Physiol Rev 64:544–616

    Article  CAS  Google Scholar 

  35. Lakshminrusimha S, Steinhorn RH (1999) Pulmonary vascular biology during neonatal transition. Clin Perinatol 26:601–619

    Article  CAS  Google Scholar 

  36. Shaul PW, Farrar MA, Magness RR (1993) Pulmonary endothelial nitric oxide production is developmentally regulated in the fetus and newborn. Am J Phys 265:H1056–H1063

    CAS  Google Scholar 

  37. Abman SH, Chatfield BA, Hall SL, McMurtry IF (1990) Role of endothelium-derived relaxing factor during transition of pulmonary circulation at birth. Am J Phys 259:H1921–H1927

    CAS  Google Scholar 

  38. Ghanayem NS, Gordon JB (2001) Modulation of pulmonary vasomotor tone in the fetus and neonate. Respir Res 2(3):139–144

    Article  CAS  Google Scholar 

  39. Lakshminrusimha S, Steinhorn RH (1999) Pulmonary vascular biology during neonatal transition. Clin Perinatol 26(3):601–619

    Article  CAS  Google Scholar 

  40. Shekerdemian L, Bohn D (1999) Cardiovascular effects of mechanical ventilation. Arch Dis Child 80(5):475–480

    Article  CAS  Google Scholar 

  41. West MDPD, John B (2011) Respiratory physiology: the essentials, 9th edn. Published by Lippincott Williams & Wilkins

    Google Scholar 

  42. Whittenberger JL, McGregor M, Berglund E, Borst HG, Whittenberger JL, McGregor M, Berglund E, Borst HG (1960) Influence of state of inflation of the lung on pulmonary vascular resistance. J Appl Physiol 15:878–882

    Article  CAS  Google Scholar 

  43. Benumof JL (1979) Mechanism of decreased blood flow to atelectatic lung. J Appl Physiol Respir Environ Exerc Physiol 46(6):1047–1048

    CAS  Google Scholar 

  44. Burton AC, Patel DJ (1958) Effect on pulmonary vascular resistance of inflation of the rabbit lungs. J Appl Physiol 12:239–246

    Article  CAS  Google Scholar 

  45. Pinsky MR (1984) Determinants of pulmonary arterial flow variation during respiration. J Appl Physiol Respir Environ Exerc Physiol 56(5):1237–1245

    CAS  Google Scholar 

  46. Marini JJ, Culver BH, Butler J (1981) Mechanical effect of lung distention with positive pressure on cardiac function. Am Rev Respir Dis 124(4):382–386

    CAS  Google Scholar 

  47. Jardin F, Farcot JC, Boisante L, Curien N, Margairaz A, Bourdarias JP (1981) Influence of positive end-expiratory pressure on left ventricular performance. N Engl J Med 304(7):387–392

    Article  CAS  Google Scholar 

  48. Scharf SM, Ingram RH Jr (1977) Influence of abdominal pressure and sympathetic vasoconstriction on the cardiovascular response to positive end-expiratory pressure. Am Rev Respir Dis 116(4):661–670

    Article  CAS  Google Scholar 

  49. Salem MR, Crystal GJ (2011) Pulmonary vascular tone and the anesthesiologist. Middle East J Anaesthesiol 21(2):147–151

    Google Scholar 

  50. Jack F (2011) Price. Unique aspects of heart failure in the neonate. In: Shaddy RE (ed) Heart failure in congenital heart disease: from fetus to adult, pp 21–42

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Desai .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag London Ltd., part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Desai, A., Macrae, D. (2022). Cardiovascular Physiology in Infants, Children, and Adolescents. In: da Cruz, E.M., Ivy, D., Hraska, V., Jaggers, J. (eds) Pediatric and Congenital Cardiology, Cardiac Surgery and Intensive Care. Springer, London. https://doi.org/10.1007/978-1-4471-4999-6_255-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4999-6_255-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4999-6

  • Online ISBN: 978-1-4471-4999-6

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics