Skip to main content

Advertisement

Log in

Inflammation modulates fibronectin isoform expression in colonic lamina propria fibroblasts (CLPF)

  • Original Article
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Abstract

Background

Migration of colonic lamina propria fibroblasts (CLPF) plays an important role during mucosal wound healing as well as fibrosis and fistula formation in Crohn’s disease (CD). Recently, we showed that the migratory potential of CD-CLPF was significantly reduced compared to control CLPF. Fistula-derived CD-CLPF migrated less and fibrosis-CLPF more than CLPF from inflamed CD mucosa. These changes in migratory behavior were associated with changes in production of the migration-inducing fibronectin (FN) isoforms ED-A and ED-B. A permanent reduction of the migratory potential of CLPF was mediated by IFN-γ and tumor necrosis factor (TNF) modulate FN isofom expression in CLPF and thereby might regulate CLPF migration.

Materials and methods

Control CLPF were incubated for 72 h with IFN-γ, TNF, IFN-γ plus TNF, or TGF-β1. Messenger RNA (mRNA) was isolated and expression of FN and isoforms ED-A and ED-B was quantified by real-time polymerase chain reaction. FN, ED-A, and ED-B were investigated by Western blotting. FN receptor integrin α5β1 was analyzed by FACS.

Results

No difference was found for the surface display of integrin α5β1 between stimulated and non-stimulated cells. In TGF-β1 incubated CLPF mRNA amount of FN and isoforms ED-A and ED-B was slightly increased. IFN-γ only decreased FN in CLPF, TNF significantly reduced FN-mRNA by 40%, FN ED-A mRNA by 25%, and ED-B mRNA by 50%. The TNF-mediated mRNA downregulation resulted in a decreased protein amount as revealed by Western blotting.

Conclusion

Cytokines such as IFN-γ, TNF, and TGF-β1 modulate the production of fibronectin isoforms. Our data indicate that inflammation-induced modulation of FN-isoform production is involved in the alterations of migratory potential of CLPF isolated from CD mucosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AIDA:

Advanced Image Data Analyser

CLPF:

colonic lamina propria fibroblasts

CD:

Cohn’s disease

DMEM:

Dulbecco’s Modified Eagle’s medium

ED-A:

extra domain A

ED-B:

extra domain B

IIICS:

type III connecting segment

EDTA:

ethylendiaminetetraacetic acid

FCS:

fetal calf serum

FN:

fibronectin

GAPDH:

glycerinaldehyde-3-phosphate dehydrogenase

IBD:

inflammatory bowel disease

IFN-γ:

interferon-γ

PBS:

phosphate-buffered saline

SDS:

sodium dodecyl sulfate

TNF:

tumor necrosis factor

TGF-β1:

transforming growth factor-β1

References

  1. Hynes RO (1990) Fibronectins. Springer series in molecular biology. Springer, New York

    Google Scholar 

  2. Hynes RO (1985) Fibronectins: a family of complex and versatile adhesive glycoproteins derived from a single gene. Harvey Lect 81:133–152

    PubMed  CAS  Google Scholar 

  3. Zardi L, Carnemolla B, Siri A, Petersen TE, Paolella G, Sebastio G, Baralle FE (1987) Transformed human cells produce a new fibronectin isoform by preferential alternative splicing of a previously unobserved exon. EMBO J 6:2337–2342

    PubMed  CAS  Google Scholar 

  4. Vartio T, Laitinen L, Narvanen O, Cutolo M, Thornell LE, Zardi L, Virtanen I (1987) Differential expression of the ED sequence-containing form of cellular fibronectin in embryonic and adult human tissues. J Cell Sci 88(Pt 4):419–430

    PubMed  CAS  Google Scholar 

  5. Schwarzbauer JE (1991) Fibronectin: from gene to protein. Curr Opin Cell Biol 3:786–791

    Article  PubMed  CAS  Google Scholar 

  6. Owens RJ, Kornblihtt AR, Baralle FE (1986) Fibronectin, the generation of multiple polypeptides from a single gene. Oxf Surv Eukaryot Genes 3:141–160

    PubMed  CAS  Google Scholar 

  7. Hynes R (1985) Molecular biology of fibronectin. Annu Rev Cell Biol 1:67–90

    Article  PubMed  CAS  Google Scholar 

  8. Kornblihtt AR, Umezawa K, Vibe-Pedersen K, Baralle FE (1985) Primary structure of human fibronectin: differential splicing may generate at least 10 polypeptides from a single gene. EMBO J 4:1755–1759

    PubMed  CAS  Google Scholar 

  9. Schwarzbauer JE, Tamkun JW, Lemischka IR, Hynes RO (1983) Three different fibronectin mRNAs arise by alternative splicing within the coding region. Cell 35:421–431

    Article  PubMed  CAS  Google Scholar 

  10. Sekiguchi K, Klos AM, Kurachi K, Yoshitake S, Hakomori S (1986) Human liver fibronectin complementary DNAs: identification of two different messenger RNAs possibly encoding the alpha and beta subunits of plasma fibronectin. Biochemistry 25:4936–4941

    Article  PubMed  CAS  Google Scholar 

  11. Ffrench-Constant C, Van De Water L, Dvorak HF, Hynes RO (1989) Reappearance of an embryonic pattern of fibronectin splicing during wound healing in the adult rat. J Cell Biol 109:903–914

    Article  PubMed  CAS  Google Scholar 

  12. Barnes JL, Hastings RR, De la Garza MA (1994) Sequential expression of cellular fibronectin by platelets, macrophages, and mesangial cells in proliferative glomerulonephritis. Am J Pathol 145:585–597

    PubMed  CAS  Google Scholar 

  13. Jarnagin WR, Rockey DC, Koteliansky VE, Wang SS, Bissell DM (1994) Expression of variant fibronectins in wound healing: cellular source and biological activity of the EIIIA segment in rat hepatic fibrogenesis. J Cell Biol 127:2037–2048

    Article  PubMed  CAS  Google Scholar 

  14. Kuhn C III, Boldt J, King TE Jr., Crouch E, Vartio T, McDonald JA (1989) An immunohistochemical study of architectural remodeling and connective tissue synthesis in pulmonary fibrosis. Am Rev Respir Dis 140:1693–1703

    PubMed  Google Scholar 

  15. Coito AJ, Brown LF, Peters JH, Kupiec-Weglinski JW, Van De WL (1997) Expression of fibronectin splicing variants in organ transplantation: a differential pattern between rat cardiac allografts and isografts. Am J Pathol 150:1757–1772

    PubMed  CAS  Google Scholar 

  16. Dubin D, Peters JH, Brown LF, Logan B, Kent KC, Berse B, Berven S, Cercek B, Sharifi BG, Pratt RE (1995) Balloon catheterization induced arterial expression of embryonic fibronectins. Arterioscler Thromb Vasc Biol 15:1958–1967

    PubMed  CAS  Google Scholar 

  17. Takasaki I, Chobanian AV, Mamuya WS, Brecher P (1992) Hypertension induces alternatively spliced forms of fibronectin in rat aorta. Hypertension 20:20–25

    PubMed  CAS  Google Scholar 

  18. Castellani P, Viale G, Dorcaratto A, Nicolo G, Kaczmarek J, Querze G, Zardi L (1994) The fibronectin isoform containing the ED-B oncofetal domain: a marker of angiogenesis. Int J Cancer 59:612–618

    Article  PubMed  CAS  Google Scholar 

  19. Jarnagin WR, Rockey DC, Koteliansky VE, Wang SS, Bissell DM (1994) Expression of variant fibronectins in wound healing: cellular source and biological activity of the EIIIA segment in rat hepatic fibrogenesis. J Cell Biol 127:2037–2048

    Article  PubMed  CAS  Google Scholar 

  20. Manabe R, Oh-e N, Sekiguchi K (1999) Alternatively spliced EDA segment regulates fibronectin-dependent cell cycle progression and mitogenic signal transduction. J Biol Chem 274:5919–5924

    Article  PubMed  CAS  Google Scholar 

  21. Serini G, Bochaton-Piallat ML, Ropraz P, Geinoz A, Borsi L, Zardi L, Gabbiani G (1998) The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-beta1. J Cell Biol 142:873–881

    Article  PubMed  CAS  Google Scholar 

  22. Manabe R, Ohe N, Maeda T, Fukuda T, Sekiguchi K (1997) Modulation of cell-adhesive activity of fibronectin by the alternatively spliced EDA segment. J Cell Biol 139:295–307

    Article  PubMed  CAS  Google Scholar 

  23. Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11–25

    Article  PubMed  CAS  Google Scholar 

  24. Pierschbacher MD, Ruoslahti E (1984) Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309:30–33

    Article  PubMed  CAS  Google Scholar 

  25. Goke M, Zuk A, Podolsky DK (1996) Regulation and function of extracellular matrix intestinal epithelial restitution in vitro. Am J Physiol 271:G729–G740

    PubMed  CAS  Google Scholar 

  26. Johansson S, Svineng G, Wennerberg K, Armulik A, Lohikangas L (1997) Fibronectin-integrin interactions. Front Biosci 2:d126–d146

    PubMed  CAS  Google Scholar 

  27. Leeb SN, Vogl D, Gunckel M, Kiessling S, Falk W, Goke M, Scholmerich J, Gelbmann CM, Rogler G (2003) Reduced migration of fibroblasts in inflammatory bowel disease: role of inflammatory mediators and focal adhesion kinase. Gastroenterology 125:1341–1354

    Article  PubMed  CAS  Google Scholar 

  28. Meier JH, Leeb SN, Falk W, Scholmerich J, Rogler G (2003) The migratory potential of Crohn’s disease myofibroblasts differs significantly between inflamed mucosa, strictures, and fistulae. Gastroenterology 124(Suppl. 1):A–329

    Google Scholar 

  29. Leeb SN, Vogl D, Grossmann J, Falk W, Scholmerich J, Rogler G, Gelbmann CM (2004) Autocrine fibronectin-induced migration of human colonic fibroblasts. Am J Gastroenterol 99:335–340

    Article  PubMed  Google Scholar 

  30. Brenmoehl J, Lang M, Hausmann M, Leeb SN, Falk W, Scholmerich J, Goke M, Rogler G (2006) Evidence for a differential expression of fibronectin splice forms ED-A and ED-B in Crohn’s disease (CD) mucosa. Int J Colorectal Dis 22:611–623

    Article  PubMed  Google Scholar 

  31. Leeb SN, Vogl D, Falk W, Scholmerich J, Rogler G, Gelbmann CM (2002) Regulation of migration of human colonic myofibroblasts. Growth Factors 20:81–91

    Article  PubMed  CAS  Google Scholar 

  32. Parronchi P, Romagnani P, Annunziato F, Sampognaro S, Becchio A, Giannarini L, Maggi E, Pupilli C, Tonelli F, Romagnani S (1997) Type 1 T-helper cell predominance and interleukin-12 expression in the gut of patients with Crohn’s disease. Am J Pathol 150:823–832

    PubMed  CAS  Google Scholar 

  33. Schreiber S, MacDermott RP, Raedler A, Pinnau R, Bertovich MJ, Nash GS (1991) Increased activation of isolated intestinal lamina propria mononuclear cells in inflammatory bowel disease. Gastroenterology 101:1020–1030

    PubMed  CAS  Google Scholar 

  34. Schreiber S (1999) Activation of nuclear factor kappaB as a target for anti-inflammatory therapy. Gut 44:309–310

    PubMed  CAS  Google Scholar 

  35. Nielsen OH, Koppen T, Rudiger N, Horn T, Eriksen J, Kirman I (1996) Involvement of interleukin-4 and -10 in inflammatory bowel disease. Dig Dis Sci 41:1786–1793

    Article  PubMed  CAS  Google Scholar 

  36. Nikolaus S, Bauditz J, Gionchetti P, Witt C, Lochs H, Schreiber S (1998) Increased secretion of pro-inflammatory cytokines by circulating polymorphonuclear neutrophils and regulation by interleukin 10 during intestinal inflammation. Gut 42:470–476

    Article  PubMed  CAS  Google Scholar 

  37. Braegger CP, MacDonald TT (1994) Immune mechanisms in chronic inflammatory bowel disease. Ann Allergy 72:135–141

    PubMed  CAS  Google Scholar 

  38. Elsasser-Beile U, von Kleist S, Gerlach S, Gallati H, Monting JS (1994) Cytokine production in whole blood cell cultures of patients with Crohn’s disease and ulcerative colitis. J Clin Lab Anal 8:447–451

    Article  PubMed  CAS  Google Scholar 

  39. Funakoshi K, Sugimura K, Sasakawa T, Bannai H, Anezaki K, Ishizuka K, Yoshida K, Narisawa R, Asakura H (1995) Study of cytokines in ulcerative colitis. J Gastroenterol 30(Suppl 8):61–63

    PubMed  CAS  Google Scholar 

  40. Monteleone G, MacDonald TT (2000) Manipulation of cytokines in the management of patients with inflammatory bowel disease. Ann Med 32:552–560

    Article  PubMed  CAS  Google Scholar 

  41. Murata Y, Ishiguro J, Itoh J, Munakata A, Yoshida Y (1995) The role of inflammatory and immunoregulatory cytokines in the pathogenesis of ulcerative colitis. J Gastroenterol 30(Suppl 8):56–60

    PubMed  Google Scholar 

  42. Stallmach A, Giese T, Schmidt C, Ludwig B, Mueller-Molaian I, Meuer SC (2004) Cytokine/chemokine transcript profiles reflect mucosal inflammation in Crohn’s disease. Int J Colorectal Dis 19:308–315

    Article  PubMed  Google Scholar 

  43. Camoglio L, Te Velde AA, Tigges AJ, Das PK, Van Deventer SJ (1998) Altered expression of interferon-gamma and interleukin-4 in inflammatory bowel disease. Inflamm Bowel Dis 4:285–290

    Article  PubMed  CAS  Google Scholar 

  44. Brouty-Boye D, Zetter BR (1980) Inhibition of cell motility by interferon. Science 208:516–518

    Article  PubMed  CAS  Google Scholar 

  45. Adelmann-Grill BC, Hein R, Wach F, Krieg T (1987) Inhibition of fibroblast chemotaxis by recombinant human interferon gamma and interferon alpha. J Cell Physiol 130:270–275

    Article  PubMed  CAS  Google Scholar 

  46. Postlethwaite AE, Seyer JM (1990) Stimulation of fibroblast chemotaxis by human recombinant tumor necrosis factor alpha (TNF-alpha) and a synthetic TNF-alpha 31–68 peptide. J Exp Med 172:1749–1756

    Article  PubMed  CAS  Google Scholar 

  47. Goetze S, Xi XP, Kawano Y, Kawano H, Fleck E, Hsueh WA, Law RE (1999) TNF-alpha-induced migration of vascular smooth muscle cells is MAPK dependent. Hypertension 33:183–189

    PubMed  CAS  Google Scholar 

  48. Simmons JG, Pucilowska JB, Keku TO, Lund PK (2002) IGF-I and TGF-beta1 have distinct effects on phenotype and proliferation of intestinal fibroblasts. Am J Physiol Gastrointest Liver Physiol 283:G809–G818

    PubMed  CAS  Google Scholar 

  49. Vaughan MB, Howard EW, Tomasek JJ (2000) Transforming growth factor-beta1 promotes the morphological and functional differentiation of the myofibroblast. Exp Cell Res 257:180–189

    Article  PubMed  CAS  Google Scholar 

  50. Mulsow JJ, Watson RW, Fitzpatrick JM, O’Connell PR (2005) Transforming growth factor-beta promotes pro-fibrotic behavior by serosal fibroblasts via PKC and ERK1/2 mitogen activated protein kinase cell signaling. Ann Surg 242:880–887, discussion

    Article  PubMed  Google Scholar 

  51. Wells RG (2000) Fibrogenesis: V. TGF-beta signaling pathways. Am J Physiol Gastrointest Liver Physiol 279:G845–G850

    PubMed  CAS  Google Scholar 

  52. Branton MH, Kopp JB (1999) TGF-beta and fibrosis. Microbes Infect 1:1349–1365

    Article  PubMed  CAS  Google Scholar 

  53. Feagan BG, Enns R, Fedorak RN, Panaccione R, Pare P, Steinhart AH, Wild G (2001) Infliximab for the treatment of Crohn’s disease: efficacy, safety and pharmacoeconomics. Can J Clin Pharmacol 8:188–198

    PubMed  CAS  Google Scholar 

  54. Cosnes J, Cattan S, Blain A, Beaugerie L, Carbonnel F, Parc R, Gendre JP (2002) Long-term evolution of disease behavior of Crohn’s disease. Inflamm Bowel Dis 8:244–250

    Article  PubMed  Google Scholar 

  55. Sands BE, Anderson FH, Bernstein CN, Chey WY, Feagan BG, Fedorak RN, Kamm MA, Korzenik JR, Lashner BA, Onken JE, Rachmilewitz D, Rutgeerts P, Wild G, Wolf DC, Marsters PA, Travers SB, Blank MA, Van Deventer SJ (2004) Infliximab maintenance therapy for fistulizing Crohn’s disease. N Engl J Med 350:876–885

    Article  PubMed  CAS  Google Scholar 

  56. Present DH, Rutgeerts P, Targan S, Hanauer SB, Mayer L, van Hogezand RA, Podolsky DK, Sands BE, Braakman T, DeWoody KL, Schaible TF, Van Deventer SJ (1999) Infliximab for the treatment of fistulas in patients with Crohn’s disease. N Engl J Med 340:1398–1405

    Article  PubMed  CAS  Google Scholar 

  57. Meier JH, Leeb SN, Falk W, Scholmerich J, Rogler G (2003) The migratory potential of Crohn’s disease myofibroblasts differs significantly between inflamed mucosa, strictures, and fistulae. Gastroenterology 124(Suppl. 2):A–329

    Google Scholar 

Download references

Acknowledgment

This work was supported by the BMBF “Kompetenznetzwerk—Chronisch entzündliche Darmerkrankungen”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Brenmoehl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brenmoehl, J., Falk, W., Göke, M. et al. Inflammation modulates fibronectin isoform expression in colonic lamina propria fibroblasts (CLPF). Int J Colorectal Dis 23, 947–955 (2008). https://doi.org/10.1007/s00384-008-0523-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00384-008-0523-z

Keywords

Navigation