Skip to main content

Advertisement

Log in

Intrauterine exposure to oxidative stress induces caspase-1-dependent enteric nerve cell pyroptosis

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Purpose

This study determined whether oxidative stress causes the developmental abnormalities of the enteric nervous system during the embryonic period.

Methods

Using the test results of tissue specimens of children with Hirschsprung disease (HSCR), we established a pregnant rat model of oxidative stress and a cellular oxidative stress model to conduct related molecular, cellular, and histopathological experiments for exploration and validation.

Results

The results of the quantitative real-time polymerase chain reaction assay indicated overexpression of pyroptosis markers (NLRP3, ASC, and caspase-1) in HSCR lesions and newborn pups in the oxidative stress group (treated with d-galactose). The expression of cathepsin D was significantly decreased in intestinal tissues of newborn pups in the oxidative stress group compared to the control group. Reactive oxygen species scavengers (N-acetyl-cysteine, NAC), the caspase-1 inhibitor (VX-765), and the NLRP3 siRNA could reverse the release of LDH, decrease the number of propidium iodide stained cells, and reduce the percentage of TUNEL/caspase-3 double-positive cells in the H2O2-treated group.

Conclusion

Oxidative stress can induce the death of enteric nerve cells by activating caspase-1-dependent pyroptosis through NLRP3 inflammasomes, which may contribute to abnormal enteric nervous system development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Furness JB, Callaghan BP, Rivera LR, Cho HJ (2014) The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv Exp Med Biol 817:39–71

    Article  PubMed  Google Scholar 

  2. Kuo BR, Erickson CA (2011) Vagal neural crest cell migratory behavior: a transition between the cranial and trunk crest. Dev Dyn 240:2084–2100

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kapur RP (2000) Colonization of the murine hindgut by sacral crest-derived neural precursors: experimental support for an evolutionarily conserved model. Dev Biol 227:146–155

    Article  CAS  PubMed  Google Scholar 

  4. Heuckeroth RO (2018) Hirschsprung disease—integrating basic science and clinical medicine to improve outcomes. Nat Rev Gastroenterol Hepatol 15:152–167

    Article  PubMed  Google Scholar 

  5. Goldstein AM, Cox NJ (2019) Complex simplicity and Hirschsprung’s disease. N Engl J Med 380:1478–1479

    Article  PubMed  Google Scholar 

  6. Chatterjee S, Nandakumar P, Auer DR, Gabriel SB, Chakravarti A (2019) Gene- and tissue-level interactions in normal gastrointestinal development and Hirschsprung disease. Proc Natl Acad Sci USA 116:26697–26708

    Article  CAS  PubMed Central  Google Scholar 

  7. Jaroy EG, Acosta-Jimenez L, Hotta R, Goldstein AM, Emblem R, Klungland A, Ougland R (2019) “Too much guts and not enough brains”: (epi)genetic mechanisms and future therapies of Hirschsprung disease—a review. Clin Epigenetics 11:135

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lake JI, Heuckeroth RO (2013) Enteric nervous system development: migration, differentiation, and disease. Am J Physiol Gastrointest Liver Physiol 305:G1-24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Butler Tjaden NE, Trainor PA (2013) The developmental etiology and pathogenesis of Hirschsprung disease. Transl Res 162:1–15

    Article  CAS  PubMed  Google Scholar 

  10. Akbareian SE, Nagy N, Steiger CE, Mably JD, Miller SA, Hotta R, Molnar D, Goldstein AM (2013) Enteric neural crest-derived cells promote their migration by modifying their microenvironment through tenascin-C production. Dev Biol 382:446–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nakazawa N, Miyahara K, Okawada M, Yamataka A, Suzuki R, Akazawa C, Tomikawa-Ichikawa N, Arikawa-Hirasawa E (2013) Laminin-1 promotes enteric nervous system development in mouse embryo. Pediatr Surg Int 29:1205–1208

    Article  PubMed  Google Scholar 

  12. Sasselli V, Pachnis V, Burns AJ (2012) The enteric nervous system. Dev Biol 366:64–73

    Article  CAS  PubMed  Google Scholar 

  13. Nagy N, Guyer RA, Hotta R, Zhang D, Newgreen DF, Halasy V, Kovacs T, Goldstein AM (2020) RET overactivation leads to concurrent Hirschsprung disease and intestinal ganglioneuromas. Development 147:dev190900

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wen Z, Shen Q, Zhang H, Su Y, Zhu Z, Chen G, Peng L, Li H, Du C, Xie H, Xu X, Tang W (2019) Circular RNA CCDC66 targets DCX to regulate cell proliferation and migration by sponging miR-488-3p in Hirschsprung’s disease. J Cell Physiol 234:10576–10587

    Article  CAS  PubMed  Google Scholar 

  15. Su Y, Wen Z, Shen Q, Zhang H, Peng L, Chen G, Zhu Z, Du C, Xie H, Li H, Xia Y, Tang W (2018) Long non-coding RNA LOC100507600 functions as a competitive endogenous RNA to regulate BMI1 expression by sponging miR128–1–3p in Hirschsprung’s disease. Cell Cycle 17:1–9

    Article  Google Scholar 

  16. Hameister R, Kaur C, Dheen ST, Lohmann CH, Singh G (2020) Reactive oxygen/nitrogen species (ROS/RNS) and oxidative stress in arthroplasty. J Biomed Mater Res B Appl Biomater 108:2073–2087

    Article  CAS  PubMed  Google Scholar 

  17. Fussell JC, Kelly FJ (2019) Oxidative contribution of air pollution to extrinsic skin ageing. Free Radic Biol Med 151:111–122

    Article  PubMed  Google Scholar 

  18. Kato M, Iwashita T, Takeda K, Akhand AA, Liu W, Yoshihara M, Asai N, Suzuki H, Takahashi M, Nakashima I (2000) Ultraviolet light induces redox reaction-mediated dimerization and superactivation of oncogenic ret tyrosine kinases. Mol Biol Cell 11:93–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen Z, Zhong C (2014) Oxidative stress in Alzheimer’s disease. Neurosci Bull 30:271–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Miller MR (2020) Oxidative stress and the cardiovascular effects of air pollution. Free Radic Biol Med 151:69–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mullen L, Mengozzi M, Hanschmann EM, Alberts B, Ghezzi P (2019) How the redox state regulates immunity. Free Radic Biol Med 157:3–14

    Article  PubMed  Google Scholar 

  22. Kramer ER, Aron L, Ramakers GM, Seitz S, Zhuang X, Beyer K, Smidt MP, Klein R (2007) Absence of Ret signaling in mice causes progressive and late degeneration of the nigrostriatal system. PLoS Biol 5:e39

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kato M, Ninomiya H, Maeda M, Tanaka N, Ilmiawati C, Yoshinaga M (2016) Commentary to Gorelenkova Miller and Mieyal (2015): sulfhydryl-mediated redox signaling in inflammation: role in neurodegenerative diseases. Arch Toxicol 90:1017–1018

    Article  CAS  PubMed  Google Scholar 

  24. Hossain K, Akhand AA, Kato M, Du J, Takeda K, Wu J, Takeuchi K, Liu W, Suzuki H, Nakashima I (2000) Arsenite induces apoptosis of murine T lymphocytes through membrane raft-linked signaling for activation of c-Jun amino-terminal kinase. J Immunol 165:4290–4297

    Article  CAS  PubMed  Google Scholar 

  25. Guo YL, Chakraborty S, Rajan SS, Wang R, Huang F (2010) Effects of oxidative stress on mouse embryonic stem cell proliferation, apoptosis, senescence, and self-renewal. Stem Cells Dev 19:1321–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cho KA, Suh JW, Lee KH, Kang JL, Woo SY (2012) IL-17 and IL-22 enhance skin inflammation by stimulating the secretion of IL-1beta by keratinocytes via the ROS-NLRP3-caspase-1 pathway. Int Immunol 24:147–158

    Article  CAS  PubMed  Google Scholar 

  27. Xue Y, Enosi Tuipulotu D, Tan WH, Kay C, Man SM (2019) Emerging activators and regulators of inflammasomes and pyroptosis. Trends Immunol 40:1035–1052

    Article  CAS  PubMed  Google Scholar 

  28. Shi J, Gao W, Shao F (2017) Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci 42:245–254

    Article  CAS  PubMed  Google Scholar 

  29. Winkler S, Rosen-Wolff A (2015) Caspase-1: an integral regulator of innate immunity. Seminars in immunopathology 37:419–427

    Article  CAS  PubMed  Google Scholar 

  30. Moossavi M, Parsamanesh N, Bahrami A, Atkin SL, Sahebkar A (2018) Role of the NLRP3 inflammasome in cancer. Mol Cancer 17:158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gulbransen BD, Bashashati M, Hirota SA, Gui X, Roberts JA, MacDonald JA, Muruve DA, McKay DM, Beck PL, Mawe GM, Thompson RJ, Sharkey KA (2012) Activation of neuronal P2X7 receptor-pannexin-1 mediates death of enteric neurons during colitis. Nat Med 18:600–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fann DY, Lee SY, Manzanero S, Chunduri P, Sobey CG, Arumugam TV (2013) Pathogenesis of acute stroke and the role of inflammasomes. Ageing Res Rev 12:941–966

    Article  CAS  PubMed  Google Scholar 

  33. Ishrat T, Mohamed IN, Pillai B, Soliman S, Fouda AY, Ergul A, El-Remessy AB, Fagan SC (2015) Thioredoxin-interacting protein: a novel target for neuroprotection in experimental thromboembolic stroke in mice. Mol Neurobiol 51:766–778

    Article  CAS  PubMed  Google Scholar 

  34. Crowley LC, Marfell BJ, Waterhouse NJ (2016) Detection of DNA fragmentation in apoptotic cells by TUNEL. Cold Spring Harb Protoc 2016:pdb-prot087221

    Article  Google Scholar 

  35. Abu-Alfa AK, Kuan SF, West AB, Reyes-Múgica M (1997) Cathepsin D in intestinal ganglion cells. A potential aid to diagnosis in suspected Hirschsprung’s disease. Am J Surg Pathol 21:201–205

    Article  CAS  PubMed  Google Scholar 

  36. Karaca G, Karaca ZM, Kayhan B, Bayindir Y, Kayabas U, Toplu S, Elmasdag S, Onalan E, Yesilada E (2019) The relationship between caspase-1 related inflammasome expression and serum inflammatory cytokine levels during acute brucellosis. North Clin Istanb 6:117–123

    PubMed  Google Scholar 

  37. Schroder K, Tschopp J (2010) The inflammasomes. Cell 140:821–832

    Article  CAS  PubMed  Google Scholar 

  38. Wang Y, Jiang Q, Cai H, Xu Z, Wu W, Gu B, Li L, Cai W (2020) Genetic variants in RET, ARHGEF3 and CTNNAL1, and relevant interaction networks, contribute to the risk of Hirschsprung disease. Aging (Albany NY). 12:4379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Heanue TA, Pachnis V (2007) Enteric nervous system development and Hirschsprung’s disease: advances in genetic and stem cell studies. Nat Rev Neurosci 8:466–479

    Article  CAS  PubMed  Google Scholar 

  40. Lotfollahzadeh S, Taherian M, Anand S (2020) Hirschsprung disease. StatPearls, Treasure Island

    Google Scholar 

  41. Jiang Q, Arnold S, Heanue T, Kilambi KP, Doan B, Kapoor A, Ling AY, Sosa MX, Guy M, Jiang Q, Burzynski G, West K, Bessling S, Griseri P, Amiel J, Fernandez RM, Verheij JB, Hofstra RM, Borrego S, Lyonnet S, Ceccherini I, Gray JJ, Pachnis V, McCallion AS, Chakravarti A (2015) Functional loss of semaphorin 3C and/or semaphorin 3D and their epistatic interaction with ret are critical to Hirschsprung disease liability. Am J Hum Genet 96:581–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ye L, Li G, Goebel A, Raju AV, Kong F, Lv Y, Li K, Zhu Y, Raja S, He P, Li F, Mwangi SM, Hu W, Srinivasan S (2020) Caspase-11-mediated enteric neuronal pyroptosis underlies Western diet-induced colonic dysmotility. J Clin Investig 130:3621–3636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhao C, Zhao W (2020) NLRP3 inflammasome—a key player in antiviral responses. Front Immunol 11:211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kuwar R, Rolfe A, Di L, Xu H, He L, Jiang Y, Zhang S, Sun D (2019) A novel small molecular NLRP3 inflammasome inhibitor alleviates neuroinflammatory response following traumatic brain injury. J Neuroinflammation 16:81

    Article  PubMed  PubMed Central  Google Scholar 

  45. Li H, Zhou L, Zhi Z, Lv X, Wei Z, Zhang X, Tang W, Tong M (2020) Lipopolysaccharide upregulates miR-132/212 in Hirschsprung-associated enterocolitis, facilitating pyroptosis by activating NLRP3 inflammasome via targeting Sirtuin 1 (SIRT1). Aging 12:18588–18602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen X, Liu G, Yuan Y, Wu G, Wang S, Yuan L (2019) NEK7 interacts with NLRP3 to modulate the pyroptosis in inflammatory bowel disease via NF-kappaB signaling. Cell Death Dis 10:906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pastor AC, Osman F, Teitelbaum DH, Caty MG, Langer JC (2009) Development of a standardized definition for Hirschsprung’s-associated enterocolitis: a delphi analysis. J Pediatr Surg 44:251–256

    Article  PubMed  Google Scholar 

  48. Garza-Lombo C, Pappa A, Panayiotidis MI, Franco R (2020) Redox homeostasis, oxidative stress and mitophagy. Mitochondrion 51:105–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ali SS, Ahsan H, Zia MK, Siddiqui T, Khan FH (2020) Understanding oxidants and antioxidants: classical team with new players. J Food Biochem 44:e13145

    Article  PubMed  Google Scholar 

  50. Yagami T, Yamamoto Y, Koma H (2019) Pathophysiological roles of intracellular proteases in neuronal development and neurological diseases. Mol Neurobiol 56:3090–3112

    Article  CAS  PubMed  Google Scholar 

  51. Bhatia S, Drake DM, Miller L, Wells PG (2019) Oxidative stress and DNA damage in the mechanism of fetal alcohol spectrum disorders. Birth Defects Res 111:714–748

    Article  CAS  PubMed  Google Scholar 

  52. Aminzadeh M, Roghani M, Sarfallah A, Riazi GH (2018) TRPM2 dependence of ROS-induced NLRP3 activation in Alzheimer’s disease. Int Immunopharmacol 54:78–85

    Article  CAS  PubMed  Google Scholar 

  53. Ganjam GK, Bolte K, Matschke LA, Neitemeier S, Dolga AM, Hollerhage M, Hoglinger GU, Adamczyk A, Decher N, Oertel WH, Culmsee C (2019) Mitochondrial damage by alpha-synuclein causes cell death in human dopaminergic neurons. Cell Death Dis 10:865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Swanson KV, Deng M, Ting JP (2019) The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol 19:477–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Penn RB (2021) Honing in on the effectors of oxidative stress in the asthmatic lung: oxidised phosphatidylcholines. Eur Respir J 57:2003736

    Article  CAS  PubMed  Google Scholar 

  56. Nakao A, Matsunaga Y, Hayashida K, Takahashi N (2021) Role of oxidative stress and Ca(2+) signaling in psychiatric disorders. Front Cell Dev Biol 9:615569

    Article  PubMed  PubMed Central  Google Scholar 

  57. Liu N, Lin MM, Huang SS, Liu ZQ, Wu JC, Liang ZQ, Qin ZH, Wang Y (2021) NADPH and mito-apocynin treatment protects against KA-induced excitotoxic injury through autophagy pathway. Front Cell Dev Biol 9:612554

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ricke KM, Pass T, Kimoloi S, Fahrmann K, Jungst C, Schauss A, Baris OR, Aradjanski M, Trifunovic A, Eriksson Faelker TM, Bergami M, Wiesner RJ (2020) Mitochondrial dysfunction combined with high calcium load leads to impaired antioxidant defense underlying the selective loss of nigral dopaminergic neurons. J Neurosci 40:1975–1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Parajuli B, Sonobe Y, Horiuchi H, Takeuchi H, Mizuno T, Suzumura A (2013) Oligomeric amyloid beta induces IL-1beta processing via production of ROS: implication in Alzheimer’s disease. Cell Death Dis 4:e975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Elsas LJ (2001) Prenatal diagnosis of galactose-l-phosphate uridyltransferase (GALT)-deficient galactosemia. Prenat Diagn 21:302–303

    Article  CAS  PubMed  Google Scholar 

  61. Gubbels CS, Land JA, Rubio-Gozalbo ME (2008) Fertility and impact of pregnancies on the mother and child in classic galactosemia. Obstet Gynecol Surv 63:334–343

    Article  PubMed  Google Scholar 

  62. Yu F, Hao S, Zhao Y, Yang H, Fan XL, Yang J (2011) In utero and lactational beta-carotene supplementation attenuates d-galactose-induced hearing loss in newborn rats. Food Chem Toxicol 49:1697–1704

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81801496, 81900460, and 81700449).

Author information

Authors and Affiliations

Authors

Contributions

WT and JT conceived the project and designed the experiments. LZ and BW performed experiments. LZ, HX, and CD analyzed the data. LZ draught the manuscript under the guidance of JT and WT. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Jie Tang or Weibing Tang.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1: Supplementary Table 1: Primers used for qRT-PCR.(PDF 32 KB)

383_2022_5199_MOESM2_ESM.tif

Supplementary file2: Supplementary Figure 1. (A) The relative ROS was analyzed by Image J. Treatment with H2O2 fostered intracellular ROS production in SH-SY5Y cells. (B) The percentage of tunel/caspase-1 double-positive cells was increased in the H2O2-treated groups. (C) NAC (ROS inhibitor) alleviated the ROS production in SH-SY5Y cells with the treatment of H2O2. (D) NAC reversed the change of the percentage of tunel/caspase-1 double-positive cells caused by H2O2 treatment. (E) Caspase-1 selective inhibitor (VX-765) decreased H2O2-induced pyroptotic cell death, as demonstrated by reducing the percentage of Tunel/Caspase-1 double-positive cells. (F) The expression of NLRP3 mRNA was significantly decreased by siRNA. (G) NLRP3 siRNA decreased the percentage of tunel/caspase-1 double-positive cells induced by H2O2. *P < 0.05; **P < 0.01; ***P < 0.001 (TIF 1672 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Wang, B., Xie, H. et al. Intrauterine exposure to oxidative stress induces caspase-1-dependent enteric nerve cell pyroptosis. Pediatr Surg Int 38, 1555–1567 (2022). https://doi.org/10.1007/s00383-022-05199-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-022-05199-8

Keywords

Navigation