Skip to main content
Log in

Record-breaking Barents Sea ice loss favors to the unprecedented summertime extreme heatwave in 2021 over western North America by enhancing Rossby wave ridge

  • Original Article
  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

A record-setting extreme heatwave occurred over western North America (WNA) in the summer of 2021, which was associated with an extreme atmospheric Rossby wave ridge (ARR) over WNA and a minimum record event of the preceding winter Barents Sea ice concentration. We identify the remote effect and investigate how the Barents Sea ice loss (BSIL) in the preceding winter relates to the intensity of the ARR and extreme heatwaves in the following June and July (JJ) by analyzing the reanalysis data. Our results suggest that the atmospheric wave activity flux associated with the BSIL transferred wave energy towards the circumglobal teleconnection (CGT)-like wave trains, increasing the wave amplitude and enhancing the ARR over WNA. The anomalous sea ice melting in JJ, originating from the BSIL in the preceding winter through ocean-air-sea ice positive feedback processes, also induces a northward shift of jet stream by meridional temperature gradient change. The weakening of the local jet from the original jet axis area drives anticyclonic anomalies which increases atmospheric subsidence and shortwave radiation. The energy is transferred from the weakened jet to synoptic-scale disturbances via wave-current interaction. The northward jet as a waveguide causes the CGT to shift northward and receive signals from the higher latitude. Both the CGT-like wave trains and the shifted jet streams synergistically contribute to the increase of ARR intensity and the frequency of extreme heatwaves. Overall, the BSIL will serve as an early predictor for properly forecasting the extreme heatwaves over WNA six months in advance, which potentially improves the prediction skills.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

The daily and monthly mean NCEP-NCAR reanalysis II data can be downloaded from https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html. The monthly mean SIC data can be obtained at https://nsidc.org/data/nsidc-0051/versions/2. The RMM index sourced from the Australian Bureau of Meteorology data server, accessible at http://www.bom.gov.au/climate/mjo/. The CMIP6 outputs are obtained from https://esgf-node.llnl.gov/search/cmip6/. The CESM-LE model outputs are available from https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.cesmLE.atm.proc.monthly_ave.html.

References

  • Barnes EA, Screen JA (2015) The impact of Arctic warming on the midlatitude jet-stream: can it? Has it? Will it? Wiley Interdiscip Rev Clim Change 6:277–286

    Article  Google Scholar 

  • Bartusek S, Kornhuber K, Ting M (2022) 2021 North American heatwave amplified by climate change-driven nonlinear interactions. Nat Clim Chang 12:1143–1150

    Article  Google Scholar 

  • Bercos-Hickey E, O’Brien TA, Wehner MF, Zhang L, Patricola CM, Huang H, Risser MD (2022) Anthropogenic contributions to the 2021 Pacific northwest heatwave. Geophys Res Lett 49(23):e2022GL099396

    Article  Google Scholar 

  • Black E, Blackburn M, Harrison G, Hoskins B, Methven J (2004) Factors contributing to the summer 2003 European heatwave. Weather 59(8):217–223

    Article  Google Scholar 

  • Bretherton CS, Widmann M, Dymnikov VP, Wallace JM, Bladé I (1999) The effective number of spatial degrees of freedom of a time-varying field. J Clim 12:1990–2009

    Article  Google Scholar 

  • Butler AH, Thompson DW, Heikes R (2010) The steady-state atmospheric circulation response to climate change–like thermal forcings in a simple general circulation model. J Clim 23(13):3474–3496

    Article  Google Scholar 

  • Chen Z, Gan B, Wu L, Jia F (2018) Pacific-North American teleconnection and North Pacific Oscillation: historical simulation and future projection in CMIP5 models. Clim Dyn 50:4379–4403

    Article  Google Scholar 

  • Chen Z, Gan B, Huang F et al (2023) The influence of Pacific-North American teleconnection on the North Pacific SST anomalies in wintertime under the global warming. Clim Dyn 60:1481–1494

    Article  Google Scholar 

  • Chripko S, Msadek R, Sanchez-Gomezet E et al (2021) Impact of reduced Arctic sea ice on Northern Hemisphere climate and weather in autumn and winter. J Clim 34:5847–5867

    Google Scholar 

  • Christidis N, Stott PA (2015) Changes in the geopotential height at 500 hPa under the influence of external climatic forcings. Geophys Res Lett 42:10798–10806

    Article  Google Scholar 

  • Cohen J, Screen J, Furtado J et al (2014) Recent Arctic amplification and extreme mid-latitude weather. Nat Geosci 7:627–637

    Article  CAS  Google Scholar 

  • Coumou D, Petoukhov V, Rahmstorf S, Petri S, Schellnhuber HJ (2014) Quasi-resonant circulation regimes and hemispheric synchronization of extreme weather in boreal summer. Proc Natl Acad Sci 111(34):12331–12336

    Article  CAS  Google Scholar 

  • Curry JA, Schramm JL, Ebert EE (1995) Sea ice-albedo climate feedback mechanism. J Clim 8:240–247

    Article  Google Scholar 

  • Deser C, Tomas R, Alexander M, Lawrence D (2010) The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century. J Clim 23:333–351

    Article  Google Scholar 

  • DiGirolamo N, Parkinson CL, Cavalieri DJ, Gloersen P, Zwally HJ (2022) Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data, version 2 [Data Set]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center

  • Ding Q, Wang B (2005) Circumglobal teleconnection in the Northern Hemisphere summer. J Clim 18(17):3483–3505

    Article  Google Scholar 

  • Dong Z, Wang L, Xu P, Cao J, Yang R (2023) Heatwaves similar to the unprecedented one in summer 2021 over western North America are projected to become more frequent in a warmer world. Earth’s Future 11(2):e2022EF003437

    Article  Google Scholar 

  • Döscher R, Vihma T, Maksimovich E (2014) Recent advances in understanding the arctic climate system state and change from a sea ice perspective: a review. Atmos Chem Phys 14:13571–13600

    Article  Google Scholar 

  • Ebi KL, Capon A, Berry P et al (2021) Hot weather and heat extremes: health risks. Lancet 398(10301):698–708

    Article  Google Scholar 

  • Emerton R, Brimicombe C, Magnusson L et al (2022) Predicting the unprecedented: forecasting the June 2021 Pacific northwest heatwave. Weather 77(8):272–279

    Article  Google Scholar 

  • Environment and Climate Change Canada (2021). Canada’s top 10 weather stories of 2021. Available online at https://www.canada.ca/en/environment-climate-change/services/top-ten-weather-stories/2021.html.

  • Francis JA, Vavrus SJ (2012) Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys Res Lett 39(6):L06801

    Article  Google Scholar 

  • Francis JA, Vavrus SJ (2015) Evidence for a wavier jet stream in response to rapid Arctic warming. Environ Res Lett 10(1):014005

    Article  Google Scholar 

  • Gu S, Zhang Y, Wu Q, Yang XQ (2018) The linkage between Arctic sea ice and midlatitude weather: In the perspective of energy. J Geophys Res Atmos 123(20):11536–11550

    Article  Google Scholar 

  • Hall RJ, Scaife AA, Hanna E, Jones JM, Erdélyi R (2017) Simple statistical probabilistic forecasts of the winter NAO. Weather Forecast 32:1585–1601

    Article  Google Scholar 

  • He S, Gao Y, Furevik T, Wang H, Li F (2018) Teleconnection between sea ice in the Barents Sea in June and the Silk Road, Pacific-Japan and East Asian rainfall patterns in August. Adv Atmos Sci 35:52–64

    Article  Google Scholar 

  • Heeter KJ, Harley GL, Abatzoglou JT et al (2023) Unprecedented 21st century heat across the Pacific Northwest of North America. Clim Atmos Sci 6:5

    Article  Google Scholar 

  • Henderson SB, McLean KE, Lee MJ, Kosatsky T (2022) Analysis of community deaths during the catastrophic 2021 heat dome. Environ Epidemiol 6(1):e189

    Article  Google Scholar 

  • Honda M, Inoue J, Yamane S (2009) Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys Res Lett 36:L08707

    Article  Google Scholar 

  • Hong XW, Lu RY (2016) The meridional displacement of the summer Asian jet, silk road pattern, and tropical SST anomalies. J Clim 29:3753–3766

    Article  Google Scholar 

  • Hoskins BJ, James IN, White GH (1983) The shape, propagation and mean-flow interaction of large-scale weather systems. J Atmos Sci 40(7):1595–1612

    Article  Google Scholar 

  • Jenney AM, Nardi KM, Barnes EA, Randall DA (2019) The seasonality and regionality of MJO impacts on North American temperature. Geophys Res Lett 46:9193–9202

    Article  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J, Yang S-K, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II reanalysis(R-2). Bull Am Meteorol Soc 83:1631–1643

    Article  Google Scholar 

  • Kim DW, Lee S (2022) Dynamical mechanism of the summer circulation trend pattern and surface high temperature anomalies over the Russian far east. J Clim 35(19):6381–6393

    Article  Google Scholar 

  • King AD, Black MT, Min S-K, Fischer EM, Mitchell DM, Harrington LJ, Perkins-Kirkpatrick SE (2016) Emergence of heat extremes attributable to anthropogenic infuences. Geophys Res Lett 43(7):3438–3443

    Article  Google Scholar 

  • Koenigk T, Mikolajewicz U, Jungclaus JH, Kroll A (2009) Sea ice in the Barents Sea: seasonal to interannual variability and climate feedbacks in a global coupled model. Clim Dyn 32:1119–1138

    Article  Google Scholar 

  • Lee YY, Grotjahn R (2019) Evidence of specific MJO phase occurrence with summertime California Central Valley extreme hot weather. Adv Atmos Sci 36(6):589–602

    Article  Google Scholar 

  • Lin Q, Yuan J (2022) Linkages between amplified quasi-stationary waves and humid heat extremes in Northern Hemisphere midlatitudes. J Clim 35(24):8245–8258

    Article  Google Scholar 

  • Lin H, Mo R, Vitart F (2022) The 2021 western North American heatwave and its subseasonal predictions. Geophys Res Lett 49(6):e2021GL097036

    Article  Google Scholar 

  • Lucarini V, Galfi VM, Messori G, Riboldi J (2023) Typicality of the 2021 western North America summer heatwave. Environ Res Lett 18:015004

    Article  Google Scholar 

  • Luo D, Huang F, Diao Y (2001) Interaction between antecedent planetary-scale envelope soliton blocking anticyclone and synoptic-scale eddies: observations and theory. J Geophys Res Atmos 106(D23):31795–31815

    Article  Google Scholar 

  • McKinnon KA, Simpson IR (2022) How unexpected was the 2021 Pacific Northwest heatwave? Geophys Res Lett 49(18):e2022GL100380

    Article  Google Scholar 

  • Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st Century. Science 305(5686):994–997

    Article  CAS  Google Scholar 

  • Nakamura N, Huang CSY (2018) Atmospheric blocking as a traffic jam in the jet stream. Science 361(6397):42–47

    Article  CAS  Google Scholar 

  • Neal E, Huang CSY, Nakamura N (2022) The 2021 Pacific Northwest heat wave and associated blocking: meteorology and the role of an upstream cyclone as a diabatic source of wave activity. Geophys Res Lett 49(8):e2021GL097699

    Article  Google Scholar 

  • Nie Y, Ren H, Zhang Y, Zhang P (2022) Roles of atmospheric variability and Arctic sea ice in the asymmetric Arctic-Eurasia temperature connection on subseasonal time scale. J Clim 35:7575–7594

    Article  Google Scholar 

  • Overland JE (2021) Causes of the record-breaking Pacific Northwest heatwave, late June 2021. Atmosphere 12(11):1434

    Article  Google Scholar 

  • Parkinson CL, Washington WM (1979) A large-scale numerical model of sea ice. J Geophys Res 84:311–337

    Article  Google Scholar 

  • Pena-Ortiz C, Gallego D, Ribera P, Ordonez P, Alvarez-Castro MDC (2013) Observed trends in the global jet stream characteristics during the second half of the 20th century. J Geophys Res 118(7):2702–2713

    Article  Google Scholar 

  • Perkins-Kirkpatrick SE, Lewis SC (2020) Increasing trends in regional heatwaves. Nat Commun 11:3357

    Article  CAS  Google Scholar 

  • Philip SY, Kew SF, van Oldenborgh GJ et al (2021) Rapid attribution analysis of the extraordinary heatwave on the Pacific coast of the US and Canada June 2021. Earth Syst Dyn. https://doi.org/10.5194/esd-13-1689-2022

  • Qian Y, Hsu PC, Yuan J, Zhu Z, Wang H, Duan M (2022) Effects of subseasonal variation in the east Asian monsoon system on the summertime heat wave in western North America in 2021. Geophys Res Lett 49(8):e2021GL097659

    Article  Google Scholar 

  • Rogers CDW, Kornhuber K, PerkinsKirkpatrick SE, Loikith PC, Singh D (2022) Sixfold increase in historical northern hemisphere concurrent large heatwaves driven by warming and changing atmospheric circulations. J Clim 35(3):1063–1078

    Article  Google Scholar 

  • Schramm PJ, Vaidyanathan A, Radhakrishnan L, Gates A, Hartnett K, Breysse P (2021) Heat-related emergency department visits during the northwestern heat wave - United States. MMWR Morb Mortal Wkly Rep 70(29):1020–1021

    Article  Google Scholar 

  • Schumacher DL, Hauser M, Seneviratne SI (2022) Drivers and mechanisms of the 2021 Pacific Northwest heatwave. Earth’s Future 10(12):e2022EF002967

    Article  Google Scholar 

  • Screen JA (2017) Simulated atmospheric response to regional and pan-Arctic sea ice loss. J Clim 30(11):3945–3962

    Article  Google Scholar 

  • Screen JA, Simmonds I (2010) The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464(7293):1334–1337

    Article  CAS  Google Scholar 

  • Serreze MC, Barrett AP, Stroeve JC, Kindig DN, Holland MM (2009) The emergence of surface-based Arctic amplification. Cryosphere 3:11–19

    Article  Google Scholar 

  • Stefanon M, D’Andrea F, Drobinski P (2012) Heatwave classification over Europe and the Mediterranean region. Environ Res Lett 7:014023

    Article  Google Scholar 

  • Takaya K, Nakamura H (2001) A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J Atmos Sci 58(6):608–627

    Article  Google Scholar 

  • Tang Q, Zhang X, Yang X, Francis JA (2013) Cold winter extremes in northern continents linked to Arctic sea ice loss. Environ Res Lett 8:014036

    Article  Google Scholar 

  • Teng H, Branstator G, Wang H, Meehl GA, Washington WM (2013) Probability of US heat waves affected by a subseasonal planetary wave pattern. Nat Geosci 6:1056–1061

    Article  CAS  Google Scholar 

  • Thompson V, Kennedy-Asser AT, Vosper E et al (2022) The 2021 western North America heat wave among the most extreme events ever recorded globally. Sci Adv 8(18):eabm6860

    Article  Google Scholar 

  • Tibaldi S, D’Andrea F, Tosi E, Roeckner E (1997) Climatology of Northern Hemisphere blocking in the ECHAM model. Clim Dyn 13(9):649–666

    Article  Google Scholar 

  • Vihma T (2014) Effects of Arctic sea ice decline on weather and climate: a review. Surv Geophys 35:1175–1214

    Article  Google Scholar 

  • Wang Y, Huang F, Fan T (2017) Spatio-temporal variations of Arctic amplification and their linkage with the Arctic oscillation. Acta Oceanol Sin 36:42–51

    Article  Google Scholar 

  • Wang H, Gao Y, Wang Y, Sheng L (2022) Arctic sea ice modulation of summertime heatwaves over western North America in recent decades. Environ Res Lett 17:074015

    Article  Google Scholar 

  • Wang C, Zheng J, Lin W, Wang Y (2023) Unprecedented heatwave in western North America during late June of 2021: roles of atmospheric circulation and global warming. Adv Atmos Sci 40:14–28

    Article  Google Scholar 

  • Warner JL, Screen JA, Scaife AA (2020) Links between Barents-Kara sea ice and the extratropical atmospheric circulation explained by internal variability and tropical forcing. Geophys Res Lett 47(1):e2019GL085679

    Article  Google Scholar 

  • Wheeler MC, Hendon HH (2004) An All-Season Real-Time Multivariate MJO Index: Development of an Index for Monitoring and Prediction. Mon Wea Rev 132:1917–1932

    Article  Google Scholar 

  • World Meteorological Organization (WMO) International Meteorological Vocabulary, No. 182. Available online: http://www.wmo.int/. Accessed 20 Aug 2023

  • Wu B, Ding S (2023) Cold-Eurasia contributes to arctic warm anomalies. Clim Dyn 60:4157–4172

    Article  Google Scholar 

  • Wu B, Francis JA (2019) Summer Arctic cold anomaly dynamically linked to East Asian heat waves. J Clim 32:1137–1150

    Article  Google Scholar 

  • Wu B, Zhang R, Wang B, D’Arrigo R (2009) On the association between spring Arctic sea ice concentration and Chinese summer rainfall. Geophys Res Lett 36:L09501

    Article  Google Scholar 

  • Wu B, Yang K, Francis J (2016) Summer Arctic dipole wind pattern affects the winter Siberian high. Int J Climatol 36:4187–4201

    Article  Google Scholar 

  • Wu B, Li ZK, Francis JA, Ding S (2022) A recent weakening of winter temperature association between Arctic and Asia. Environ Res Lett 17:034030

    Article  CAS  Google Scholar 

  • Xing W, Huang F (2019) Improvements in long-lead prediction of early-summer subtropical frontal rainfall based on Arctic sea ice. J Ocean Univ China 18(3):542–552

    Article  CAS  Google Scholar 

  • Yang H, Fan K (2022) Reversal of monthly East Asian winter air temperature in 2020/21 and its predictability. Atmos Ocean Sci Lett 15(1):100142

    Article  Google Scholar 

  • Yin C, Yang Y, Chen X, Yue X, Liu Y, Xin Y (2022) Global near real-time daily apparent temperature and heat wave dataset. Geosci Data J 10:231–245

    Article  Google Scholar 

  • Yu B, Lin H, Mo R et al (2023) A physical analysis of summertime North American heatwaves. Clim Dyn. https://doi.org/10.1007/s00382-022-06642-1

    Article  Google Scholar 

  • Zhang X, Zhou T, Zhang W et al (2023) Increased impact of heat domes on 2021-like heat extremes in North America under global warming. Nat Commun 14:1690

    Article  CAS  Google Scholar 

  • Zhou T, Zhang W, Zhang L et al (2022a) 2021: A year of unprecedented climate extremes in Eastern Asia, North America, and Europe. Adv Atmos Sci 39:1598–1607

    Article  Google Scholar 

  • Zhou X, Wang B, Huang F (2022b) Evaluating sea ice thickness simulation is critical for projecting a summer ice-free Arctic Ocean. Environ Res Lett 17(11):114033

    Article  Google Scholar 

  • Zhu Z, Huang F, Xie X (2019) Predictability of Chinese summer extreme rainfall based on Arctic sea ice and tropical sea surface temperature. J Ocean Univ China 18(3):626–632

    Article  Google Scholar 

  • Zschenderlein P, Fink AH, Pfahl S, Wernli H (2019) Processes determining heat waves across different European climates. Q J R Meteorol Soc 145:2973–2989

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the anonymous reviewers whose comments and suggestions have helped us to improve the overall quality of the manuscript. We acknowledge the NCEP and NSIDC for producing and making available their datasets. The authors also acknowledge the Earth System Grid Federation (ESGF) web for providing CMIP6 project datasets and the CESM-LE project for providing model outputs.

Funding

This work was supported by the National Key Research and Development Program of China (2019YFA0607004), National Natural Science Foundation of China (NSFC) Projects (42006017, 42075024, 42075025), and Natural Science Foundation of Shandong Province (ZR2019ZD12), Taishan Pandeng Scholar Project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Huang or Zheng Chen.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Huang, F. & Chen, Z. Record-breaking Barents Sea ice loss favors to the unprecedented summertime extreme heatwave in 2021 over western North America by enhancing Rossby wave ridge. Clim Dyn (2024). https://doi.org/10.1007/s00382-024-07168-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00382-024-07168-4

Keywords

Navigation