Skip to main content
Log in

Teleconnection between sea ice in the Barents Sea in June and the Silk Road, Pacific–Japan and East Asian rainfall patterns in August

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

In contrast to previous studies that have tended to focus on the influence of the total Arctic sea-ice cover on the East Asian summer tripole rainfall pattern, the present study identifies the Barents Sea as the key region where the June sea-ice variability exerts the most significant impacts on the East Asian August tripole rainfall pattern, and explores the teleconnection mechanisms involved. The results reveal that a reduction in June sea ice excites anomalous upward air motion due to strong near-surface thermal forcing, which further triggers a meridional overturning wave-like pattern extending to midlatitudes. Anomalous downward motion therefore forms over the Caspian Sea, which in turn induces zonally oriented overturning circulation along the subtropical jet stream, exhibiting the east–west Rossby wave train known as the Silk Road pattern. It is suggested that the Bonin high, a subtropical anticyclone predominant near South Korea, shows a significant anomaly due to the eastward extension of the Silk Road pattern to East Asia. As a possible descending branch of the Hadley cell, the Bonin high anomaly ultimately triggers a meridional overturning, establishing the Pacific–Japan pattern. This in turn induces an anomalous anticyclone and cyclone pair over East Asia, and a tripole vertical convection anomaly meridionally oriented over East Asia. Consequently, a tripole rainfall anomaly pattern is observed over East Asia. Results from numerical experiments using version 5 of the Community Atmosphere Model support the interpretation of this chain of events.

摘要

以往研究主要关注整个北极区域海冰变化对东亚夏季三极子型降水的影响, 本文则从遥相关角度揭示了6月巴伦支海海冰变率对8月东亚三极子型降水的作用. 结果表明, 6月巴伦支海海冰减少, 通过近地表较强的热力作用引起局地大气的上升运动异常, 进一步激发向中纬度延伸的经向翻转波列, 在里海形成大气下沉运动异常. 通过沿着副热带急流的纬向翻转环流, 该下层运动异常会激发一个东西向的罗斯贝波列, 类似于丝绸之路型. 丝绸之路型向东亚的延伸, 对位于韩国附近的副热带反气旋环流-小笠原高压产生显著影响. 作为哈德莱环流圈的一个下沉支, 异常小笠原高压引起的经向翻转环流形成了太平洋-日本遥相关型, 进一步促进了东亚地区一对异常反气旋和气旋环流、异常的经向三极子垂直对流的产生. 最终, 东亚出现三极子型降水异常. CAM5的数值模拟结果也支持本文的观点.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chen, M. Y., P. P. Xie, J. E. Janowiak, and P. A. Arkin, 2002: Global land precipitation: A 50-yr monthly analysis based on gauge observations. Journal of Hydrometeorology, 3, 249–266, https://doi.org/10.1175/1525-7541(2002)003<0249:GLPAYM>2.0.CO;2.

    Article  Google Scholar 

  • Ding, Q. H., and B. Wang, 2005: Circumglobal teleconnection in the northern hemisphere summer. J. Climate, 18, 3483–3505, https://doi.org/10.1175/JCLI3473.1.

    Article  Google Scholar 

  • Enomoto, T., 2004: Interannual variability of the bonin high associated with the propagation of Rossby waves along the Asian jet. J. Meteor. Soc. Japan, 82, 1019–1034, https://doi.org/10.2151/jmsj.2004.1019.

    Article  Google Scholar 

  • Enomoto, T., B. J. Hoskins, and Y. Matsuda, 2003: The formation mechanism of the Bonin high in August. Quart. J. Roy. Meteor. Soc., 129, 157–178, https://doi.org/10.1256/qj.01.211.

    Article  Google Scholar 

  • Grunseich, G., and B. Wang, 2016: Arctic sea ice patterns driven by the Asian summer monsoon. J. Climate, 29, 9097–9112, https://doi.org/10.1175/JCLI-D-16-0207.1.

    Article  Google Scholar 

  • Guan, Z. Y., and T. Yamagata, 2003: The unusual summer of 1994 in East Asia: IOD teleconnections. Geophys. Res. Lett., 30, 1544, https://doi.org/10.1029/2002GL016831.

    Article  Google Scholar 

  • Guo, D., Y. Q. Gao, I. Bethke, D. Y. Gong, O. M. Johannessen, and H. J. Wang, 2014: Mechanism on how the spring Arctic sea ice impacts the East Asian summer monsoon. Theor. Appl. Climatol., 115, 107–119, https://doi.org/10.1007/s00704-013-0872-6.

    Article  Google Scholar 

  • He, S.-P., 2015: Potential connection between the Australian summer monsoon circulation and summer precipitation over central China. Atmospheric and Oceanic Science Letters, 8, 120–126, https://doi.org/10.3878/AOSL20140091.

    Article  Google Scholar 

  • Hong, X. W., and R. Y. Lu, 2016: The meridional displacement of the summer Asian jet, silk road pattern, and tropical SST anomalies. J. Climate, 29, 3753–3766, https://doi.org/10.1175/JCLI-D-15-0541.1.

    Article  Google Scholar 

  • Hsu, H.-H., and X. Liu, 2003: Relationship between the Tibetan Plateau heating and East Asian summer monsoon rainfall. Geophys. Res. Lett., 30, 2066, https://doi.org/10.1029/2003GL017909.

    Google Scholar 

  • Hsu, H.-H., and S.-M. Lin, 2007: Asymmetry of the tripole rainfall pattern during the East Asian summer. J. Climate, 20, 4443–4458, https://doi.org/10.1175/JCLI4246.1.

    Article  Google Scholar 

  • Huang, R. H., and F. Y. Sun, 1992: Impacts of the tropical western Pacific on the East Asian summer monsoon. J. Meteor. Soc. Japan, 70, 243–256, https://doi.org/10.2151/jmsj1965.70.1B243.

    Article  Google Scholar 

  • Ju, L.-X., and Z.-W. Han, 2013: Impact of different East Asian summer monsoon circulations on aerosol-induced climatic effects. Atmospheric and Oceanic Science Letters, 6, 227–232, https://doi.org/10.3878/j.issn.1674-2834.13.0018.

    Article  Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    Article  Google Scholar 

  • Kosaka, Y., and H. Nakamura, 2006: Structure and dynamics of the summertime Pacific–Japan teleconnection pattern. Quart. J. Roy. Meteor. Soc., 132, 2009–2030, https://doi.org/10.1256/qj.05.204.

    Article  Google Scholar 

  • Lau, K.-M., and H. Y. Weng, 2001: Coherent modes of global SST and summer rainfall over China: An assessment of the regional impacts of the 1997-98 El Ni˜no. J. Climate, 14, 1294–1308, https://doi.org/10.1175/1520-0442(2001)014<1294:CMOGSA>2.0.CO;2.

    Article  Google Scholar 

  • Lu, R.-Y., J.-H. Oh, and B.-J. Kim, 2002: A teleconnection pattern in upper-level meridional wind over the North African and Eurasian continent in summer. Tellus A, 54, 44–55. http://dx.doi.org/10.3402/tellusa.v54i1.12122.

    Article  Google Scholar 

  • Matsumura, S., and K. Yamazaki, 2012: Eurasian subarctic summer climate in response to anomalous snow cover. J. Climate, 25, 1305–1317, https://doi.org/10.1175/2011JCLI4116.1.

    Article  Google Scholar 

  • Matsumura, S., X. D. Zhang, and K. Yamazaki, 2014: Summer Arctic atmospheric circulation response to spring Eurasian snow cover and its possible linkage to accelerated sea ice decrease. J. Climate, 27, 6551–6558, https://doi.org/10.1175/JCLI-D-13-00549.1.

    Article  Google Scholar 

  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373–390, https://doi.org/10.2151/jmsj1965.65.3373.

    Article  Google Scholar 

  • Nitta, T., and Z.-Z. Hu, 1996: Summer climate variability in China and its association with 500 hPa height and tropical convection. J. Meteor. Soc. Japan, 74, 425–445, https://doi.org/10.2151/jmsj1965.74.4425.

    Article  Google Scholar 

  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late Nineteenth Century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    Article  Google Scholar 

  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 1228–1251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    Article  Google Scholar 

  • Screen, J. A., 2013: Influence of Arctic sea ice on European summer precipitation. Environmental Research Letters, 8, 044015, https://doi.org/10.1088/1748-9326/8/4/044015.

    Article  Google Scholar 

  • Takaya, K., and H. Nakamura, 2001: A formulation of a phaseindependent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608–627, https://doi.org/10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2.

    Article  Google Scholar 

  • Tian, S.-F., and T. Yasunari, 1992: Time and space structure of interannual variations in summer rainfall over China. J. Meteor. Soc. Japan, 70, 585–596, https://doi.org/10.2151/jmsj1965.70.1B585.

    Article  Google Scholar 

  • Wang, H. J., and S. P. He, 2015: The North China/Northeastern Asia severe summer drought in 2014. J. Climate, 28, 6667–6681, https://doi.org/10.1175/JCLI-D-15-0202.1.

    Article  Google Scholar 

  • Wang, H. J., and H. P. Chen, 2012: Climate control for southeastern China moisture and precipitation: Indian or East Asian monsoon? J. Geophys. Res., 117, D12109, https://doi.org/10.1029/2012JD017734.

    Google Scholar 

  • Wang, T., H. J. Wang, O. H. Otterå, Y. Q. Gao, L. L. Suo, T. Furevik, and L. Yu, 2013: Anthropogenic agent implicated as a prime driver of shift in precipitation in eastern China in the late 1970s. Atmospheric Chemistry and Physics, 13, 12433–12450, https://doi.org/10.5194/acp-13-12433-2013.

    Article  Google Scholar 

  • Weng, H. Y., K.-M. Lau, and Y. K. Xue, 1999: Multi-scale summer rainfall variability over China and its long-term link to global sea surface temperature variability. J. Meteor. Soc. Japan, 77, 845–857, https://doi.org/10.2151/jmsj1965.77.4845.

    Article  Google Scholar 

  • Wu, B. Y., R. H. Zhang, B. Wang, and R. D’Arrigo, 2009: On the association between spring Arctic sea ice concentration and Chinese summer rainfall. Geophys. Res. Lett., 36, L09501, https://doi.org/10.1029/2009GL037299.

    Google Scholar 

  • Xie, S.-P., K. M. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Ni˜no. J. Climate, 22, 730–747, https://doi.org/10.1175/2008JCLI2544.1.

    Article  Google Scholar 

  • Xu, Z. Q., K. Fan, and H. J. Wang, 2016: Role of sea surface temperature anomalies in the tropical Indo-Pacific region in the northeast Asia severe drought in summer 2014: Monthto-month perspective. Climate Dyn., https://doi.org/10.1007/s00382-016-3406-y.

    Google Scholar 

  • Xue, F., and J.-J. Zhao, 2017: Intraseasonal variation of the East Asian summer monsoon in La Ni˜na years. Atmospheric and Oceanic Science Letters, 10, 156–161, https://doi.org/10.1080/16742834.2016.1254008.

    Article  Google Scholar 

  • Yu, L., 2013: Potential correlation between the decadal East Asian summer monsoon variability and the Pacific decadal oscillation. Atmospheric and Oceanic Science Letters, 6, 394–397, https://doi.org/10.3878/j.issn.1674-2834.13.0040.

    Article  Google Scholar 

  • Yu, L., T. Furevik, O. H. Otterå, and Y. Q. Gao, 2015: Modulation of the Pacific Decadal Oscillation on the summer precipitation over East China: A comparison of observations to 600-years control run of Bergen Climate Model. Climate Dyn., 44, 475–494, https://doi.org/10.1007/s00382-014-2141-5.

    Article  Google Scholar 

  • Yu, R.C., and T. J. Zhou, 2007: Seasonality and three-dimensional structure of interdecadal change in the East Asian monsoon. J. Climate, 20, 5344–5355, https://doi.org/10.1175/2007JCLI1559.1.

    Article  Google Scholar 

  • Zhao, P., X. D. Zhang, X. J. Zhou, M. Ikeda, and Y. H. Yin, 2004: The sea ice extent anomaly in the North Pacific and its impact on the East Asian summer monsoon rainfall. J. Climate, 17, 3434–3447, https://doi.org/10.1175/1520-0442(2004)017<3434:TSIEAI>2.0.CO;2.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key R&D Program of China (Grant No. 2016YFA0600703), the National Natural Science Foundation of China (Grant Nos. 41605059, 41505073 and 41375083), the Young Talent Support Program of the China Association for Science and Technology (Grant No. 2016QNRC001), and the Research Council of Norway SNOWGLACE (244166/E10) project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengping He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, S., Gao, Y., Furevik, T. et al. Teleconnection between sea ice in the Barents Sea in June and the Silk Road, Pacific–Japan and East Asian rainfall patterns in August. Adv. Atmos. Sci. 35, 52–64 (2018). https://doi.org/10.1007/s00376-017-7029-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-017-7029-y

Key words

关键词

Navigation