Skip to main content
Log in

Improvements in Long-Lead Prediction of Early-Summer Subtropical Frontal Rainfall Based on Arctic Sea Ice

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Seasonal prediction of East Asia (EA) summer rainfall, especially with a longer-lead time, is in great demand, but still very challenging. The present study aims to make long-lead prediction of EA subtropical frontal rainfall (SFR) during early summer (May–June mean, MJ) by considering Arctic sea ice (ASI) variability as a new potential predictor. A MJ SFR index (SFRI), the leading principle component of the empirical orthogonal function (EOF) analysis applied to the MJ precipitation anomaly over EA, is defined as the predictand. Analysis of 38-year observations (1979–2016) revealed three physically consequential predictors. A stronger SFRI is preceded by dipolar ASI anomaly in the previous autumn, a sea level pressure (SLP) dipole in the Eurasian continent, and a sea surface temperature anomaly tripole pattern in the tropical Pacific in the previous winter. These precursors foreshadow an enhanced Okhotsk High, lower local SLP over EA, and a strengthened western Pacific subtropical high. These factors are controlling circulation features for a positive SFRI. A physical-empirical model was established to predict SFRI by combining the three predictors. Hindcasting was performed for the 1979–2016 period, which showed a hindcast prediction skill that was, unexpectedly, substantially higher than that of a four-dynamical models' ensemble prediction for the 1979–2010 period (0.72 versus 0.47). Note that ASI variation is a new predictor compared with signals originating from the tropics to mid-latitudes. The long-lead hindcast skill was notably lower without the ASI signals included, implying the high practical value of ASI variation in terms of long-lead seasonal prediction of MJ EA rainfall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, M. A., Bhatt, U. S., Walsh, J. E., Timlin, M. S., Miller, J. S., and Scott, J. D., 2004. The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter. Journal of Climate, 17 (5): 890–905.

    Article  Google Scholar 

  • Chen, G. T. J., 1983. Observational aspects of the Meiyu phenomena in subtropical China. Journal of Meteorological Society of Japan, 61: 306–312.

    Article  Google Scholar 

  • Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, D. P., and Bechtold, P., 2011. The ERA-Interim re-analysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137 (656): 553–597.

    Article  Google Scholar 

  • Delworth, T. L., Broccoli, A. J., Rosati, A., Stouffer, R. J., Balaji, V., Beesley, J. A., Cooke, W. F., Dixon, K. W., Dunne, J., Dunne, K. A., and Durachta, J. W., 2006. GFDL's CM2 global coupled climate models. Part I: Formulation and simulation characteristics. Journal of Climate, 19 (5): 643–674.

    Article  Google Scholar 

  • Deser, C., Magnusdottir, G., Saravanan, R., and Phillips, A., 2004. The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part II: Direct and indirect components of the response. Journal of Climate, 17 (5): 877–889.

    Article  Google Scholar 

  • Deser, C., Tomas, R., Alexander, M., and Lawrence, D., 2010. The seasonal atmospheric response to projected Arctic sea ice loss in the late twenty-first century. Journal of Climate, 23 (2): 333–351.

    Article  Google Scholar 

  • Ding, Y., 1992. Summer monsoon rainfalls in China. Journal of the Meteorological Society of Japan, 70 (1B): 373–396.

    Article  Google Scholar 

  • Gu, W., Li, C., Li, W., Zhou, W., and Chan, J. C., 2009a. Interdecadal unstationary relationship between NAO and East China's summer precipitation patterns. Geophysical Research Letters, 36 (13): L13702.

    Article  Google Scholar 

  • Gu, W., Li, C., Wang, X., Zhou, W., and Li, W., 2009b. Linkage between mei-yu precipitation and North Atlantic SST on the decadal timescale. Advances in Atmospheric Sciences, 26 (1): 101–108.

    Article  Google Scholar 

  • Holland, M. M., Bitz, C. M., and Tremblay, B., 2006. Future abrupt reductions in the summer Arctic sea ice. Geophysical Research Letters, 33 (23): L32503.

    Article  Google Scholar 

  • Honda, M., Inoue, J., and Yamane, S., 2009. Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophysical Research Letters, 36 (8): L08707.

    Article  Google Scholar 

  • Huang, B., Banzon, V. F., Freeman, E., Lawrimore, J., Liu, W., Peterson, T. C., Smith, T. M., Thome, P. W., Woodruff, S. D., and Zhang, H. M., 2015. Extended reconstructed sea surface temperature version 4 (ERSST. v4). Part I: Upgrades and intercomparisons. Journal of Climate, 28 (3): 911–930.

    Article  Google Scholar 

  • Hudson, D., Alves, O., Hendon, H. H., and Wang, G., 2011. The impact of atmospheric initialisation on seasonal prediction of tropical Pacific SST. Climate Dynamics, 36 (5-6): 1155–1171.

    Article  Google Scholar 

  • Huffman, G. J., Bolvin, D. T., and Adler, R. F., 2011. Last updated GPCP Version 2.2 combined precipitation data set. WDC-A, NCDC, Asheville, NC (2011). Dataset accessed at http://www.ncdc.noaa.gov/oa/wmo/wdcamet-ncdc.html.

    Google Scholar 

  • Kumar, A., Perlwitz, J., Eischeid, J., Quan, X., Xu, T., Zhang, T., Hoerling, M., Jha, B., and Wang, W., 2010. Contribution of sea ice loss to Arctic amplification. Geophysical Research Letters, 37 (21): L21701.

    Article  Google Scholar 

  • Lau, N. C., Nath, M. J., and Wang, H., 2004. Simulations by a GFDL GCM of ENSO-related variability of the coupled atmosphere-ocean system in the East Asian monsoon region. In: East Asian Monsoon, World Scientific Series on Meteorology of East Asia No. 2. Chang, C. P., ed., World Scientific, Singapore, 271–300.

    Chapter  Google Scholar 

  • Lee, J. Y., Lee, S. S., Wang, B., Ha, K. J., and Jhun, J. G., 2013. Seasonal prediction and predictability of the Asian winter temperature variability. Climate Dynamics, 41 (3-4): 573–587.

    Article  Google Scholar 

  • Lee, J. Y., Wang, B., Kang, I. S., Shukla, J., Kumar, A., Kug, J. S., Schemm, J. K. E., Luo, J. J., Yamagata, T., Fu, X., and Alves, O., 2010. How are seasonal prediction skills related to models' performance on mean state and annual cycle? Climate Dynamics, 35 (2-3): 267–283.

    Article  Google Scholar 

  • Lee, S. S., Lee, J. Y., Ha, K. J., Wang, B., and Schemm, J. K. E., 2011. Deficiencies and possibilities for long-lead coupled climate prediction of the Western North Pacific-East Asian summer monsoon. Climate Dynamics, 36 (5-6): 1173–1188.

    Article  Google Scholar 

  • Li, B., and Zhou, T., 2011. ENSO-related principal interannual variability modes of early and late summer rainfall over East Asia in SST-driven AGCM simulations. Journal of Geophysical Research, 116: 1–15.

    Google Scholar 

  • Li, J., and Wang, J. X., 2003a. A modified zonal index and its physical sense. Geophysical Research Letters, 30 (12): 1632.

    Article  Google Scholar 

  • Li, J., and Wang, J. X., 2003b. A new North Atlantic Oscillation index and its variability. Advances in Atmospheric Sciences, 20 (5): 661–676.

    Article  Google Scholar 

  • Li, J., and Wu, Z., 2012. Importance of autumn Arctic sea ice to northern winter snowfall. Proceedings of the National Academy of Sciences, 109 (28): E1898–E1898.

    Article  Google Scholar 

  • Li, J., and Wang, B., 2016. How predictable is the anomaly pattern of the Indian summer rainfall? Climate Dynamics, 46 (9-10): 2847–2861.

    Article  Google Scholar 

  • Liu, J., Curry, J. A., Wang, H., Song, M., and Horton, R. M., 2012. Impact of declining Arctic sea ice on winter snowfall. Proceedings of the National Academy of Sciences, 109 (11): 4074–4079.

    Article  Google Scholar 

  • Liu, W., Huang, B., Thome, P. W., Banzon, V. F., Zhang, H. M., Freeman, E., Lawrimore, J., Peterson, T. C., Smith, T. M., and Woodruff, S. D., 2015. Extended reconstructed sea surface temperature version 4 (ERSST. v4): Part II. Parametric and structural uncertainty estimations. Journal of Climate, 28 (3): 931–951.

    Article  Google Scholar 

  • Luo, J. J., Masson, S., Behera, S., Shingu, S., and Yamagata, T., 2005. Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts. Journal of climate, 18 (21): 4474–4497.

    Article  Google Scholar 

  • Magnusdottir, G., Deser, C., and Saravanan, R., 2004. The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part I: Main features and storm track characteristics of the response. Journal of Climate, 17 (5): 857–876.

    Article  Google Scholar 

  • Mchaelsen, J., 1987. Cross-validation in statistical climate forecast models. Journal of Climate and Applied Meteorology, 26 (11): 1589–1600.

    Article  Google Scholar 

  • North, G. R., Bell, T. L., Cahalan, R. F., and Moeng, F. J., 1982. Sampling errors in the estimation of empirical orthogonal functions. Monthly Weather Review, 110 (7): 699–706.

    Article  Google Scholar 

  • Oh, H., and Ha, K. J., 2015. Thermodynamic characteristics and responses to ENSO of dominant intraseasonal modes in the East Asian summer monsoon. Climate Dynamics, 44 (7-8): 1751–1766.

    Article  Google Scholar 

  • Panofsky, H. A., and Brier, G. W., 1968. Some Applications of Statistics to Meteorology. Pennsylvania State University Press, University Park, PA, 1–224.

    Google Scholar 

  • Rayner, N. A. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., and Kaplan, A., 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research: Atmospheres, 108 (D14): 4407.

    Article  Google Scholar 

  • Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y. T., Chuang, H. Y., Iredell, M., and Ek, M., 2014. The NCEP climate forecast system version 2. Journal of Climate, 27 (6): 2185–2208.

    Article  Google Scholar 

  • Serreze, M. C., Holland, M. M., and Stroeve, J., 2007. Perspectives on the Arctic's shrinking sea-ice cover. Science, 315 (5818): 1533–1536.

    Article  Google Scholar 

  • Singarayer, J. S., Bamber, J. L., and Valdes, P. J., 2006. Twenty-first-century climate impacts from a declining Arctic sea ice cover. Journal of Climate, 19 (7): 1109–1125.

    Article  Google Scholar 

  • Su, Q., Lu, R., and Li, C., 2014. Large-scale circulation anomalies associated with interannual variation in monthly rainfall over South China from May to August. Advances in Atmospheric Sciences, 31 (2): 273–282.

    Article  Google Scholar 

  • Tao, S. Y., and Chen, L., 1987. A review of recent research on the East Asian summer monsoon in China. In: Monsoon Meteorology. Chang, C. P., and Krisnamurti, T. N., eds., Oxford University Press, Oxford, 60–92.

    Google Scholar 

  • Wang, B., and Ho, L., 2002. Rainy season of the Asian-Pacific summer monsoon. Journal of Climate, 15 (4): 386–398.

    Article  Google Scholar 

  • Wang, B., Lee, J. Y., and Xiang, B., 2015a. Asian summer monsoon rainfall predictability: A predictable mode analysis. Climate Dynamics, 44 (1-2): 61–74.

    Article  Google Scholar 

  • Wang, B., Lee, J. Y., Kang, I. S., Shukla, J., Kug, J. S., Kumar, A., Schemm, J., Luo, J. J., Yamagata, T., and Park, C. K., 2008. How accurately do coupled climate models predict the leading modes of Asian-Australian monsoon interannual variability? Climate Dynamics, 30 (6): 605–619.

    Article  Google Scholar 

  • Wang, B., Liu, J., Yang, J., Zhou, T., and Wu, Z., 2009. Distinct principal modes of early and late summer rainfall anomalies in East Asia. Journal of Climate, 22 (13): 3864–3875.

    Article  Google Scholar 

  • Wang, B., Wu, R., and Fu, X., 2000. Pacific-East Asian teleconnection: How does ENSO affect East Asian climate? Journal of Climate, 13 (9): 1517–1536.

    Article  Google Scholar 

  • Wang, B., Wu, R., and Lau, K. M., 2001. Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific-East Asian monsoons. Journal of Climate, 14 (20): 4073–4090.

    Article  Google Scholar 

  • Wang, B., Xiang, B., and Lee, J. Y., 2013. Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proceedings of the National Academy of Sciences, 110 (8): 2718–2722.

    Article  Google Scholar 

  • Wang, B., Xiang, B., Li, J., Webster, P. J., Rajeevan, M. N., Liu, J., and Ha, K. J., 2015b. Rethinking Indian monsoon rainfall prediction in the context of recent global warming. Nature Communications, 6: 7154.

    Article  Google Scholar 

  • Wang, M., and Overland, J. E., 2009. A sea ice free summer Arctic within 30 years? Geophysical Research Letters, 36 (7): L07502.

    Google Scholar 

  • Wu, B., Su, J., and Zhang, R., 2011. Effects of autumn-winter Arctic sea ice on winter Siberian High. Chinese Science Bulletin, 56 (30): 3220–3228.

    Article  Google Scholar 

  • Wu, B., Zhang, R., Wang, B., and D'Arrigo, R., 2009a. On the association between spring Arctic sea ice concentration and Chinese summer rainfall. Geophysical Research Letters, 36 (9):L09501.

    Google Scholar 

  • Wu, R., and Wang, B., 2002. A contrast of the East Asian summer monsoon-ENSO relationship between 1962–77 and 1978–93. Journal of Climate, 15 (22): 3266–3279.

    Article  Google Scholar 

  • Wu, Z., Li, J., Jiang, Z., and He, J., 2011. Predictable climate dynamics of abnormal East Asian winter monsoon: Once-in-a-century snowstorms in 2007/2008 winter. Climate Dynamics, 37 (7-8): 1661–1669.

    Article  Google Scholar 

  • Wu, Z., Li, X., Li, Y., and Li, Y., 2016. Potential influence of Arctic sea ice to the interannual variations of East Asian spring precipitation. Journal of Climate, 29 (8): 2797–2813.

    Article  Google Scholar 

  • Wu, Z., Wang, B., Li, J., and Jin, F. F., 2009b. An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO. Journal of Geophysical Research: Atmospheres, 114 (D18): D18120.

    Article  Google Scholar 

  • Xing, W., and Wang, B., 2017. Predictability and prediction of summer rainfall in the arid and semi-arid regions of China. Climate Dynamics, 49 (1-2): 419–431.

    Article  Google Scholar 

  • Xing, W., Wang, B., and Yim, S. Y., 2016. Peak-summer East Asian rainfall predictability and prediction part I: Southeast Asia. Climate Dynamics, 47 (1-2): 1–13.

    Article  Google Scholar 

  • Xing, W., Wang, B., Yim, S. Y., and Ha, K. J., 2017. Predictable patterns of the May–June rainfall anomaly over East Asia. Journal of Geophysical Research: Atmospheres, 122 (4): 2203–2217.

    Google Scholar 

  • Yim, S. Y., Wang, B., and Xing, W., 2014. Prediction of early summer rainfall over South China by a physical-empirical model. Climate Dynamics, 43 (7-8): 1883–1891.

    Article  Google Scholar 

  • Yim, S. Y., Wang, B., and Xing, W., 2016. Peak-summer East Asian rainfall predictability and prediction part II: Extra-tropical East Asia. Climate Dynamics, 47 %(1-2): 15–30.

    Article  Google Scholar 

  • Yuan, Y., Yang, H., Zhou, W., and Li, C., 2008a. Influences of the Indian Ocean Dipole on the Asian summer monsoon in the following year. International Journal of Climatology, 28 (14): 1849–1859.

    Article  Google Scholar 

  • Yuan, Y., Zhou, W., Chan, J. C., and Li, C., 2008b. Impacts of the basin-wide Indian Ocean SSTA on the South China Sea summer monsoon onset. International Journal of Climatology, 28 (12): 1579–1587.

    Article  Google Scholar 

  • Yun, K. S., Seo, K. H., and Ha, K. J., 2010. Interdecadal change in the relationship between ENSO and the intraseasonal oscillation in East Asia. Journal of Climate, 23 (13): 3599–3612.

    Article  Google Scholar 

  • Zhang, L., and Li, T., 2017. Physical processes responsible for the interannual variability of sea ice concentration in Arctic in boreal autumn since 1979. Journal of Meteorological Research, 31 (3): 468–475.

    Article  Google Scholar 

  • Zhou, T., Gong, D., Li, J., and Li, B., 2009. Detecting and understanding the multi-decadal variability of the East Asian Summer Monsoon-Recent progress and state of affairs. Meteorologische Zeitschrift, 18 (4): 455–467.

    Article  Google Scholar 

  • Zuo, J., Ren, H. L., Wu, B., and Li, W., 2016. Predictability of winter temperature in China from previous autumn Arctic sea ice. Climate Dynamics, 47 (7-8): 2331–2343.

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Global Change Research Program of China (No. 2015CB953904), and the National Natural Science Foundation of China (No. 41575067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, W., Huang, F. Improvements in Long-Lead Prediction of Early-Summer Subtropical Frontal Rainfall Based on Arctic Sea Ice. J. Ocean Univ. China 18, 542–552 (2019). https://doi.org/10.1007/s11802-019-3875-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-019-3875-9

Key words

Navigation