Skip to main content
Log in

Comparison of southward shift mechanisms of equatorial westerly anomalies between EP and CP El Niño

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

A composite analysis of observational data reveals that maximum westerly anomalies associated with both the EP and CP El Niños shift southward to 5° S during their mature phase (boreal winter), with different zonal locations. A zonal momentum budget analysis indicates that leading factors to cause the southward shift of the zonal wind anomaly for both EP and CP El Niño composites are anomalous pressure gradient force and anomalous meridional advection, while anomalous Coriolis force has an opposite effect. The difference in the longitudinal locations arises from the zonal shift of maximum SST anomaly centers between EP and CP El Niño. Prior to northern winter, the westerly anomaly for both types of El Niño is approximately symmetric about the equator. The advection by the climatological mean cross-equatorial wind leads to initial southward shift of the maximum westerly and subsequent development of an antisymmetric mode through a moisture-convection-circulation feedback and a wind-evaporation-SST feedback. An EOF analysis of the tropical Pacific surface wind field indicates that both the first and second leading modes are important in contributing to the southward shift of the maximum westerly anomaly with distinctive longitudinal locations for CP and EP El Niño.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

The HadISST dataset is available at: http://www.metoffice.gov.uk/hadobs/. ERA-Interim data were downloaded at: http://www.ecmwf.int/en/research/climate-reanalysis/era-interim.

References

  • Abellán E, McGregor S (2016) The role of the southward wind shift in both the seasonal synchronization and duration of ENSO events. Clim Dyn 47:509–527

    Article  Google Scholar 

  • Abellán E, McGregor S, England MH (2017) Analysis of the Southward Wind Shift of ENSO in CMIP5 models. J Clim 30:2415–2435

    Article  Google Scholar 

  • An S-I, Wang B (2001) Mechanisms of Locking of the El Niño and La Niña Mature Phases to Boreal Winter. J Clim 14:2164–2176

    Article  Google Scholar 

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007. https://doi.org/10.1029/2006JC003798

    Article  Google Scholar 

  • Cane MA, Zebiak SE (1985) A theory for El Niño and the Southern Oscillation. Science 228:1085–1087

    Article  Google Scholar 

  • Capotondi A, Wittenberg AT, Newman M, Di Lorenzo E, Yu JY, Braconnot P, Cole P, Dewitte B, Giese B, Guilyardi E, Jin FF, Karnauskas K, Kirtman B, Lee T, Schneider N, Xue Y, Yeh SW (2015) Understanding ENSO diversity. Bull Amer Met Soc 96(6):921–938

    Article  Google Scholar 

  • Chen M, Li T (2021) ENSO evolution asymmetry: EP versus CP El Niño. Clim Dyn 56:3569–3579

    Article  Google Scholar 

  • Chung PH, Li T (2013) Interdecadal Relationship between the Mean State and El Niño Types. J Clim 26:361–379

    Article  Google Scholar 

  • Dee DP, Uppala S (2009) Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Q J R Meteorol Soc 135:1830–1841

    Article  Google Scholar 

  • Dommenget D, Yu Y (2016) The seasonally changing cloud feedbacks contribution to the ENSO seasonal phase-locking. Clim Dynam 47:3661–3672

    Article  Google Scholar 

  • Gong Y, Li T (2021) Mechanism for Southward Shift of Zonal Wind Anomalies during the Mature Phase of ENSO. J Clim 34:8897–8911

    Google Scholar 

  • Harrison DE (1987) Monthly mean island surface winds in the central tropical Pacific and El Niño events. Mon Wea Rev 115:3133–3145

    Article  Google Scholar 

  • Harrison DE, Vecchi GA (1999) On the termination of El Niño. Geophys Res Lett 26:1593–1596

    Article  Google Scholar 

  • Hu S, Fedorov AV (2018) Cross-equatorial winds control El Niño diversity and change. Nat Clim Change 8:798–802

    Article  Google Scholar 

  • Kao H-Y, Yu J-Y (2009) Contrasting Eastern-Pacific and Central-Pacific types of ENSO. J Clim 22:615–632

    Article  Google Scholar 

  • Kug J-S, Jin F-F, An S-I (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22:1499–1515

    Article  Google Scholar 

  • Larkin NK, Harrison DE (2005) Global seasonal temperature and precipitation anomalies during El Nino autumn and winter. Geophys Res Lett 32:L16705. https://doi.org/10.1029/2005GL022860

    Article  Google Scholar 

  • Lengaigne M, Boulanger J-P, Menkes C, Spencer H (2006) Influence of the seasonal cycle on the termination of El Niño events in a coupled general circulation model. J Clim 19:1850–1868

    Article  Google Scholar 

  • Li T (1997) Air–sea interactions of relevance to the ITCZ: Analysis of coupled instabilities and experiments in a hybrid coupled GCM. J Atmos Sci 54:134–147

    Article  Google Scholar 

  • Li T, Hsu PC (2017) ENSO dynamics. Fundamentals of tropical climate dynamics. Springer International Publishing, Cham, p 236

  • Li T, Philander SGH (1996) On the annual cycle of the eastern equatorial Pacific. J Clim 9:2986–2998

    Article  Google Scholar 

  • McGregor S, Timmermann A, Schneider N, Stuecker MF, England MH (2012) The effect of the South Pacific convergence zone on the termination of El Niño events and the meridional asymmetry of ENSO. J Clim 25:5566–5586

    Article  Google Scholar 

  • McGregor S, Ramesh N, Spence P, England MH, McPhaden MJ, Santoso A (2013) Meridional movement of wind anomalies during ENSO events and their role in event termination. Geophys Res Lett 40:749–754

    Article  Google Scholar 

  • McPhaden M, Busalacchi A, Cheney R, Donguy J-R, Gage K, Halpern D, Ji M, Meyers PJG, Mitchum G, Niiler P, Picaut J, Reynolds R, Smith N, Takeuchi K (1998) The tropical ocean-global atmosphere observing system: a decade of progress. J Geophys Res 103:14169–14240

    Article  Google Scholar 

  • McPhaden MJ, Lee T, McClurg D (2011) El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys Res Lett 38:L15709. https://doi.org/10.1029/2011GL048275

    Article  Google Scholar 

  • Neelin JD, Jin F-F, Syu H-H (2000) Variations in ENSO Phase Locking. J Clim 13:2570–2590

    Article  Google Scholar 

  • Paek H, Yu J-Y, Qian C (2017) Why were the 2015/2016 and 1997/1998 extreme El Niños different? Geophys Res Lett 44:1848–1856

    Google Scholar 

  • Philander SG (1990) El Niño, La Niña, and the southern oscillation. Academic Press, London, p 289

    Google Scholar 

  • Philander SG, Yamagata T, Pacanowski R (1984) Unstable air-sea interactions in the tropics. J Atmos Sci 41:604–613

    Article  Google Scholar 

  • Rasmusson EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Weather Rev 110:354–384

    Article  Google Scholar 

  • Rayner N, Parker D, Horton E, Folland C, Alexander L, Powell D (2003) Global analyses of SST, sea ice and night marine air temperature since the late nineteenth century. J Geophys Res 108. https://doi.org/10.1029/2002JD002670

    Article  Google Scholar 

  • Spencer H (2004) Role of the atmosphere in seasonal phase locking of El Niño. Geophys Res Lett 31:L24104. https://doi.org/10.1029/2004GL021619

    Article  Google Scholar 

  • Stuecker MF, Timmermann A, Jin F-F, McGregor S, Ren H-L (2013) A combination mode of the annual cycle and the El Niño/Southern Oscillation. Nat Geosci 6:540–544

    Article  Google Scholar 

  • Vecchi GA (2006) The Termination of the 1997–98 El Niño. Part II: mechanisms of atmospheric change. J Clim 19:2647–2664

    Article  Google Scholar 

  • Vecchi GA, Harrison DE (2003) On the termination of the 2002–2003 El Niño event. Geophys Res Lett 30:1964. https://doi.org/10.1029/2003GL017564

    Article  Google Scholar 

  • Wang B, Wu R, Lukas R (1999) Roles of the Western North Pacific Wind Variation in Thermocline Adjustment and ENSO Phase Transition. J Meteorol Soc Japan 77:1–16

    Article  Google Scholar 

  • Wang B, Wu R, Fu X (2000) Pacific-East Asian teleconnection: how does ENSO affect East Asian Climate? J Clim 13:1517–1536

    Article  Google Scholar 

  • Wang B, Luo X, Yang YM, Sun W, Liu J (2019) Historical change of El Niño properties sheds light on future changes of extreme El Niño. Proc Natl Acad Sci U S A 116:22512–32251

    Article  Google Scholar 

  • Xiang B, Wang B, Li T (2013) A new paradigm for the predominance of standing Central Pacific Warming after the late 1990s. Clim Dyn 41:327–340

    Article  Google Scholar 

  • Xie S-P, Philander SGH (1994) A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus A 46:340–350

    Article  Google Scholar 

  • Yanai M, Esbensen S, Chu J-H (1973) Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J Atmos Sci 30:611–627

    Article  Google Scholar 

  • Yeh S-W, Kug J-S, Dewitte B, Kwon M-H, Kirtman BP, Jin F-F (2009) El Niño in a changing climate. Nature 461:511–514

    Article  Google Scholar 

  • Zhang W, Li H, Jin F-F, Stuecker MF, Turner AG, Klingaman NP (2015) The Annual-cycle modulation of meridional asymmetry in ENSO’s atmospheric response and its dependence on ENSO zonal structure. J Clim 28:5795–5812

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (42088101), NSF (AGS-2006553) and NOAA (NA18OAR4310282). This is SOEST contribution number 11522, IPRC contribution number 1569, and ESMC contribution 380.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Li.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, Y., Li, T. Comparison of southward shift mechanisms of equatorial westerly anomalies between EP and CP El Niño. Clim Dyn 60, 785–796 (2023). https://doi.org/10.1007/s00382-022-06346-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-022-06346-6

Keywords

Navigation