Skip to main content

Advertisement

Log in

Evolving AMOC multidecadal variability under different CO2 forcings

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Multidecadal variability of the Atlantic Meridional Overturning Circulation (AMOC) plays a vital role in Earth’s climate variability. Climate change has the potential to alter the causes and characteristics of AMOC multidecadal variability. Here we use a coupled climate model to simulate AMOC multidecadal variability under three distinct atmospheric CO2 concentrations: Last Glacial Maximum, preindustrial, and 4 × preindustrial levels. Firstly, we discover that AMOC multidecadal variability exhibits a shortened period and a reduced amplitude with increasing atmospheric CO2. We find that these changes in AMOC variability are largely related to enhanced ocean stratification in the subpolar North Atlantic with increasing CO2 which in turn changes the characteristics of westward propagating oceanic baroclinic Rossby waves. Our analysis indicates that the shortened period is primarily due to the increased speed of free oceanic Rossby waves, and the reduced amplitude is mainly due to the reduced magnitude of atmospherically-forced oceanic Rossby waves. Mean flow effects, in the form of eastward mean zonal advection and westward geostrophic self-advection, need to be considered as they largely increase the speed of Rossby waves and hence allow for a better estimate of the changes in the period and amplitude of AMOC variability. Secondly, to explore the possible linkage between atmospheric variability and AMOC fluctuations under each CO2 concentration in a qualitative manner, we analyze the relationship between the North Atlantic Oscillation (NAO) and the AMOC and find a significant negative correlation between the two only under the preindustrial levels where the NAO leads the AMOC by 3–11 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Armstrong E, Valdes P, House J, Singarayer J (2017) Investigating the impact of CO2 on low-frequency variability of the AMOC in HadCM3. J Clim 30:7863–7883

    Article  Google Scholar 

  • Arzel O, Huck T (2020) Contributions of atmospheric stochastic forcing and intrinsic ocean modes to North Atlantic Ocean interdecadal variability. J Clim 33:2351–2370

    Article  Google Scholar 

  • Arzel O, Huck T, Colin de Verdière A (2018) The internal generation of the Atlantic Ocean interdecadal variability. J Clim 31:6411–6432

    Article  Google Scholar 

  • Brady EC, Otto-Bliesner BL, Kay JE, Rosenbloom N (2013) Sensitivity to glacial forcing in the CCSM4. J Clim 26:1901–1925

    Article  Google Scholar 

  • Buckley MW, Marshall J (2016) Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: a review. Rev Geophys 54:5–63

    Article  Google Scholar 

  • Buckley MW, Ferreira D, Campin J-M et al (2012) On the relationship between decadal buoyancy anomalies and variability of the Atlantic meridional overturning circulation. J Clim 25:8009–8030

    Article  Google Scholar 

  • Chelton DB, DeSzoeke RA, Schlax MG et al (1998) Geographical variability of the first baroclinic Rossby radius of deformation. J Phys Oceanogr 28:433–460

    Article  Google Scholar 

  • Cheng W, Chiang JC, Zhang D (2013) Atlantic meridional overturning circulation (AMOC) in CMIP5 models: RCP and historical simulations. J Clim 26:7187–7197

    Article  Google Scholar 

  • Cheng J, Liu Z, Zhang S et al (2016) Reduced interdecadal variability of Atlantic Meridional Overturning Circulation under global warming. PNAS 113:3175–3178

    Article  Google Scholar 

  • Colin de Verdière A, Huck T (1999) Baroclinic instability: an oceanic wavemaker for interdecadal variability. J Phys Oceanogr 29:893–910

    Article  Google Scholar 

  • Dai A, Hu A, Meehl G et al (2005) Atlantic thermohaline circulation in a coupled general circulation model: unforced variations versus forced changes. J Clim 18:3270–3293

    Article  Google Scholar 

  • Danabasoglu G (2008) On multidecadal variability of the Atlantic meridional overturning circulation in the Community Climate System Model version 3. J Clim 21:5524–5544

    Article  Google Scholar 

  • Danabasoglu G, Yeager SG, Kwon Y-O et al (2012) Variability of the Atlantic meridional overturning circulation in CCSM4. J Clim 25:5153–5172

    Article  Google Scholar 

  • Delworth TL, Greatbatch RJ (2000) Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. J Clim 13:1481–1495

    Article  Google Scholar 

  • Delworth TL, Zeng F (2008) Simulated impact of altered Southern Hemisphere winds on the Atlantic meridional overturning circulation. Geophys Res Lett 35:L20708

    Article  Google Scholar 

  • Delworth TL, Zeng F (2012) Multicentennial variability of the Atlantic meridional overturning circulation and its climatic influence in a 4000 year simulation of the GFDL CM2. 1 climate model. Geophys Res Lett 39:L13702

    Article  Google Scholar 

  • Delworth TL, Zeng F (2016) The impact of the North Atlantic Oscillation on climate through its influence on the Atlantic meridional overturning circulation. J Clim 29:941–962

    Article  Google Scholar 

  • Delworth T, Manabe S, Stouffer RJ (1993) Interdecadal variations of the thermohaline circulation in a coupled ocean-atmosphere model. J Clim 6:1993–2011

    Article  Google Scholar 

  • Delworth TL, Manabe S, Stouffer RJ (1997) Multidecadal climate variability in the Greenland Sea and surrounding regions: a coupled model simulation. Geophys Res Lett 24:257–260

    Article  Google Scholar 

  • Delworth TL, Zeng F, Vecchi GA et al (2016) The North Atlantic Oscillation as a driver of rapid climate change in the Northern Hemisphere. Nat Geosci 9:509–512

    Article  Google Scholar 

  • Dijkstra HA, Te Raa L, Schmeits M, Gerrits J (2006) On the physics of the Atlantic multidecadal oscillation. Ocean Dyn 56:36–50

    Article  Google Scholar 

  • Dong B, Sutton RT (2005) Mechanism of interdecadal thermohaline circulation variability in a coupled ocean–atmosphere GCM. J Clim 18:1117–1135

    Article  Google Scholar 

  • Drijfhout S, Hazeleger W, Selten F, Haarsma R (2008) Future changes in internal variability of the Atlantic Meridional Overturning Circulation. Clim Dyn 30:407–419

    Article  Google Scholar 

  • Eden C, Willebrand J (2001) Mechanism of interannual to decadal variability of the North Atlantic circulation. J Clim 14:2266–2280

    Article  Google Scholar 

  • Enfield DB, Mestas-Nuñez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys Res Lett 28:2077–2080

    Article  Google Scholar 

  • Escudier R, Mignot J, Swingedouw D (2013) A 20-year coupled ocean-sea ice-atmosphere variability mode in the North Atlantic in an AOGCM. Clim Dyn 40:619–636

    Article  Google Scholar 

  • Farneti R, Vallis GK (2011) Mechanisms of interdecadal climate variability and the role of ocean–atmosphere coupling. Clim Dyn 36:289–308

    Article  Google Scholar 

  • Frankcombe L, Dijkstra H (2009) Coherent multidecadal variability in North Atlantic sea level. Geophys Res Lett 36:15: L15604

    Article  Google Scholar 

  • Frankcombe L, Dijkstra H (2011) The role of Atlantic-Arctic exchange in North Atlantic multidecadal climate variability. Geophys Res Lett 38:L16603

    Article  Google Scholar 

  • Frankcombe L, Dijkstra H, Von der Heydt A (2008) Sub-surface signatures of the Atlantic Multidecadal Oscillation. Geophys Res Lett 35:L19602

    Article  Google Scholar 

  • Frankcombe LM, Von Der Heydt A, Dijkstra HA (2010) North Atlantic multidecadal climate variability: an investigation of dominant time scales and processes. J Clim 23:3626–3638

    Article  Google Scholar 

  • Frankignoul C, Gastineau G, Kwon Y-O (2013) The influence of the AMOC variability on the atmosphere in CCSM3. J Clim 26:9774–9790

    Article  Google Scholar 

  • Gastineau G, Frankignoul C (2012) Cold-season atmospheric response to the natural variability of the Atlantic meridional overturning circulation. Clim Dyn 39:37–57

    Article  Google Scholar 

  • Gastineau G, Mignot J, Arzel O, Huck T (2018) North Atlantic Ocean internal decadal variability: role of the mean state and ocean-atmosphere coupling. J Geophys Res Oceans 123:5949–5970

    Article  Google Scholar 

  • Gill AE (1982) Atmosphere-ocean dynamics. Academic, New York

    Google Scholar 

  • Gregory J, Dixon K, Stouffer R et al (2005) A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys Res Lett 32:L12703

    Article  Google Scholar 

  • Griffies SM, Bryan K (1997) Predictability of North Atlantic multidecadal climate variability. Science 275:181–184

    Article  Google Scholar 

  • Griffies SM, Tziperman E (1995) A linear thermohaline oscillator driven by stochastic atmospheric forcing. J Clim 8:2440–2453

    Article  Google Scholar 

  • Hawkins E, Sutton R (2007) Variability of the Atlantic thermohaline circulation described by three-dimensional empirical orthogonal functions. Clim Dyn 29:745–762

    Article  Google Scholar 

  • Held IM (1983) Stationary and quasi-stationary eddies in the extratropical troposphere: theory. Large Scale Dyn Process Atmos 127:168

    Google Scholar 

  • Heuzé C (2017) North Atlantic deep water formation and AMOC in CMIP5 models. Ocean Sci 13:609–622

    Article  Google Scholar 

  • Holland MM, Bailey DA, Briegleb BP et al (2012) Improved sea ice shortwave radiation physics in CCSM4: the impact of melt ponds and aerosols on Arctic sea ice. J Clim 25:1413–1430

    Article  Google Scholar 

  • Hu A, Otto-Bliesner BL, Meehl GA et al (2008) Response of thermohaline circulation to freshwater forcing under present-day and LGM conditions. J Clim 21:2239–2258

    Article  Google Scholar 

  • Huck T, Vallis GK (2001) Linear stability analysis of the three-dimensional thermally-driven ocean circulation: application to interdecadal oscillations. Tellus A 53:526–545

    Article  Google Scholar 

  • Huck T, Vallis GK, Colin de Verdière A (2001) On the robustness of the interdecadal modes of the thermohaline circulation. J Clim 14:940–963

    Article  Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679

    Article  Google Scholar 

  • Johnson HL, Marshall DP (2002) A theory for the surface Atlantic response to thermohaline variability. J Phys Oceanogr 32:1121–1132

    Article  Google Scholar 

  • Jungclaus JH, Haak H, Latif M, Mikolajewicz U (2005) Arctic–North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J Clim 18:4013–4031

    Article  Google Scholar 

  • Kawase M (1987) Establishment of deep ocean circulation driven by deep-water production. J Phys Oceanogr 17:2294–2317

    Article  Google Scholar 

  • Killworth PD, Chelton DB, de Szoeke RA (1997) The speed of observed and theoretical long extratropical planetary waves. J Phys Oceanogr 27:1946–1966

    Article  Google Scholar 

  • Knight JR, Allan RJ, Folland CK et al (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708

    Article  Google Scholar 

  • Knight JR, Folland CK, Scaife AA (2006) Climate impacts of the Atlantic multidecadal oscillation. Geophys Res Lett 33:L17706

    Article  Google Scholar 

  • Kwon Y-O, Frankignoul C (2012) Stochastically-driven multidecadal variability of the Atlantic meridional overturning circulation in CCSM3. Clim Dyn 38:859–876

    Article  Google Scholar 

  • LaCasce J (2000) Baroclinic Rossby waves in a square basin. J Phys Oceanogr 30:3161–3178

    Article  Google Scholar 

  • Latif M, Keenlyside NS (2011) A perspective on decadal climate variability and predictability. Deep Sea Res Part II 58:1880–1894

    Article  Google Scholar 

  • Lawrence DM, Oleson KW, Flanner MG et al (2012) The CCSM4 land simulation, 1850–2005: assessment of surface climate and new capabilities. J Clim 25:2240–2260

    Article  Google Scholar 

  • Li J, Wang JX (2003) A new North Atlantic Oscillation index and its variability. Adv Atmos Sci 20:661–676

    Article  Google Scholar 

  • Li J, Sun C, Jin F (2013) NAO implicated as a predictor of Northern Hemisphere mean temperature multidecadal variability. Geophys Res Lett 40:5497–5502

    Article  Google Scholar 

  • Liu Z (1999) Planetary wave modes in the thermocline: non-Doppler-shift mode, advective mode and Green mode. Q J R Meteorol Soc 125:1315–1339

    Article  Google Scholar 

  • Liu Z (2012) Dynamics of interdecadal climate variability: a historical perspective. J Clim 25:1963–1995

    Article  Google Scholar 

  • Liu W, Liu Z (2013) A diagnostic indicator of the stability of the Atlantic meridional overturning circulation in CCSM3. J Clim 26:1926–1938

    Article  Google Scholar 

  • Liu Z, Otto-Bliesner B, He F et al (2009) Transient simulation of last deglaciation with a new mechanism for Bølling-Allerød warming. Science 325:310–314

    Article  Google Scholar 

  • Liu W, Xie SP, Liu Z et al (2017) Overlooked possibility of a collapsed Atlantic Meridional Overturning Circulation in warming climate. Sci Adv 3:e1601666

    Article  Google Scholar 

  • Liu W, Fedorov AV, Sévellec F (2019) The mechanisms of the Atlantic meridional overturning circulation slowdown induced by Arctic sea ice decline. J Clim 32:977–996

    Article  Google Scholar 

  • Liu W, Fedorov AV, Xie SP et al (2020) Climate impacts of a weakened Atlantic Meridional Overturning Circulation in a warming climate. Sci Adv 6:eaaz4876

    Article  Google Scholar 

  • Ma X, Liu W, Allen RJ et al (2020) Dependence of regional ocean heat uptake on anthropogenic warming scenarios. Sci Adv 6:eabc0303

    Article  Google Scholar 

  • MacMartin DG, Zanna L, Tziperman E (2016) Suppression of Atlantic meridional overturning circulation variability at increased CO2. J Clim 29:4155–4164

    Article  Google Scholar 

  • McManus JF, Francois R, Gherardi J-M et al (2004) Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428:834–837

    Article  Google Scholar 

  • Menary MB, Wood RA (2018) An anatomy of the projected North Atlantic warming hole in CMIP5 models. Clim Dyn 50:3063–3080

    Article  Google Scholar 

  • Menary MB, Park W, Lohmann K et al (2012) A multimodel comparison of centennial Atlantic meridional overturning circulation variability. Clim Dyn 38:2377–2388

    Article  Google Scholar 

  • Menary MB, Hodson DL, Robson JI et al (2015a) Exploring the impact of CMIP5 model biases on the simulation of North Atlantic decadal variability. Geophys Res Lett 42:5926–5934

    Article  Google Scholar 

  • Menary MB, Hodson DLR, Robson JI et al (2015) A Mechanism of Internal Decadal Atlantic Ocean Variability in a high-resolution coupled climate model. J Clim 28:7764–7785

    Article  Google Scholar 

  • Msadek R, Frankignoul C (2009) Atlantic multidecadal oceanic variability and its influence on the atmosphere in a climate model. Clim Dyn 33:45–62

    Article  Google Scholar 

  • Msadek R, Dixon K, Delworth T, Hurlin W (2010) Assessing the predictability of the Atlantic meridional overturning circulation and associated fingerprints. Geophys Res Lett 37:L19608

    Google Scholar 

  • Muir LC, Fedorov AV (2017) Evidence of the AMOC interdecadal mode related to westward propagation of temperature anomalies in CMIP5 models. Clim Dyn 48:1517–1535

    Article  Google Scholar 

  • Neale RB, Chen C-C, Gettelman A et al (2010) Description of the NCAR community atmosphere model (CAM 5.0). NCAR Tech Note NCAR/TN-486 + STR 1:1–12

    Google Scholar 

  • Oelsmann J, Borchert L, Hand R et al (2020) Linking ocean forcing and atmospheric interactions to Atlantic Multidecadal Variability in MPI-ESM1.2. Geophys Res Lett 47:e2020GL087259

    Article  Google Scholar 

  • Ortega P, Montoya M, González-Rouco F et al (2012) Variability of the Atlantic meridional overturning circulation in the last millennium and two IPCC scenarios. Clim Dyn 38:1925–1947

    Article  Google Scholar 

  • Ortega P, Mignot J, Swingedouw D et al (2015) Reconciling two alternative mechanisms behind bi-decadal variability in the North Atlantic. Prog Oceanogr 137:237–249

    Article  Google Scholar 

  • Ortega P, Robson J, Sutton RT, Andrews MB (2017) Mechanisms of decadal variability in the Labrador Sea and the wider North Atlantic in a high-resolution climate model. Clim Dyn 49:2625–2647

    Article  Google Scholar 

  • Park W, Latif M (2008) Multidecadal and multicentennial variability of the meridional overturning circulation. Geophys Res Lett 35:L22703

    Article  Google Scholar 

  • Rossby C-G (1939) Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. J Mar Res 2:38–55

    Article  Google Scholar 

  • Ruprich-Robert Y, Cassou C (2015) Combined influences of seasonal East Atlantic Pattern and North Atlantic Oscillation to excite Atlantic multidecadal variability in a climate model. Clim Dyn 44:229–253

    Article  Google Scholar 

  • Sévellec F, Fedorov AV (2013) The leading, interdecadal eigenmode of the Atlantic meridional overturning circulation in a realistic ocean model. J Clim 26:2160–2183

    Article  Google Scholar 

  • Sévellec F, Fedorov AV (2015) Optimal excitation of AMOC decadal variability: links to the subpolar ocean. Prog Oceanogr 132:287–304

    Article  Google Scholar 

  • Sgubin G, Swingedouw D, Drijfhout S et al (2017) Abrupt cooling over the North Atlantic in modern climate models. Nat Commun 8:14375

    Article  Google Scholar 

  • Shields CA, Bailey DA, Danabasoglu G et al (2012) The low-resolution CCSM4. J Clim 25:3993–4014

    Article  Google Scholar 

  • Smith R, Jones P, Briegleb B et al (2010) The parallel ocean program (POP) reference manual: ocean component of the community climate system model (CCSM) and community earth system model (CESM). LAUR-01853 141:1–140

    Google Scholar 

  • Srokosz M, Bryden H (2015) Observing the Atlantic Meridional Overturning Circulation yields a decade of inevitable surprises. Science 348:1255575

    Article  Google Scholar 

  • Sun C, Li J, Kucharski F et al (2019) Contrasting spatial structures of Atlantic Multidecadal Oscillation between observations and slab ocean model simulations. Clim Dyn 52:1395–1411

    Article  Google Scholar 

  • Sutton RT, Hodson DL (2005) Atlantic Ocean forcing of North American and European summer climate. Science 309:115–118

    Article  Google Scholar 

  • Sutton R, McCarthy GD, Robson J et al (2018) Atlantic multidecadal variability and the UK ACSIS program. Bull Am Meteor Soc 99:415–425

    Article  Google Scholar 

  • Te Raa LA, Dijkstra HA (2002) Instability of the thermohaline ocean circulation on interdecadal timescales. J Phys Oceanogr 32:138–160

    Article  Google Scholar 

  • Timmermann A, Latif M, Voss R, Grötzner A (1998) Northern Hemispheric interdecadal variability: a coupled air–sea mode. J Clim 11:1906–1931

    Article  Google Scholar 

  • Tulloch R, Marshall J (2012) Exploring mechanisms of variability and predictability of Atlantic meridional overturning circulation in two coupled climate models. J Clim 25:4067–4080

    Article  Google Scholar 

  • Vellinga M, Wu P (2004) Low-latitude freshwater influence on centennial variability of the Atlantic thermohaline circulation. J Clim 17:4498–4511

    Article  Google Scholar 

  • Weaver AJ, Sarachik E, Marotzke J (1991) Internal low frequency variability of the ocean’s thermohaline circulation. Nature 353:836–838

    Article  Google Scholar 

  • Wen N, Frankignoul C, Gastineau G (2016) Active AMOC–NAO coupling in the IPSL-CM5A-MR climate model. Clim Dyn 47:2105–2119

    Article  Google Scholar 

  • Yeager S, Robson J (2017) Recent progress in understanding and predicting Atlantic decadal climate variability. Curr Clim Change Rep 3:112–127

    Article  Google Scholar 

  • Yin F, Sarachik E (1995) Interdecadal thermohaline oscillations in a sector ocean general circulation model: advective and convective processes. J Phys Oceanogr 25:2465–2484

    Article  Google Scholar 

  • Zhang R (2008) Coherent surface-subsurface fingerprint of the Atlantic meridional overturning circulation. Geophys Res Lett 35:L20705

    Article  Google Scholar 

  • Zhang R (2010) Latitudinal dependence of Atlantic meridional overturning circulation (AMOC) variations. Geophys Res Lett 37:L16703

    Article  Google Scholar 

  • Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett 33:L17712

    Article  Google Scholar 

  • Zhang L, Wang C (2013) Multidecadal North Atlantic sea surface temperature and Atlantic meridional overturning circulation variability in CMIP5 historical simulations. J Geophys Res Oceans 118:5772–5791

    Article  Google Scholar 

  • Zhang J, Zhang R (2015) On the evolution of Atlantic Meridional Overturning Circulation Fingerprint and implications for decadal predictability in the North Atlantic. Geophys Res Lett 42:5419–5426

    Article  Google Scholar 

  • Zhang R, Sutton R, Danabasoglu G et al (2019) A review of the role of the Atlantic meridional overturning circulation in Atlantic multidecadal variability and associated climate impacts. Rev Geophys 57:316–375

    Article  Google Scholar 

  • Zhu X, Jungclaus J (2008) Interdecadal variability of the meridional overturning circulation as an ocean internal mode. Clim Dyn 31:731–741

    Article  Google Scholar 

  • Zhu J, Liu Z, Zhang J, Liu W (2015) AMOC response to global warming: dependence on the background climate and response timescale. Clim Dyn 44:3449–3468

    Article  Google Scholar 

Download references

Acknowledgements

XM and GH were supported by CAS COMS2019Q03 and NSFC (41831175, 91937302 and 41721004). NJB was supported by NSF Award OCE-1756658 and a Sloan Ocean Fellowship. We thank the three anonymous reviewers for their thoughtful comments, which helped to improve the manuscript. We are grateful to Peng Hu and Yihua Lin for the valuable discussions on the topic. We thank the development group from the National Center for Atmospheric Research for making their model freely available. Data used in the paper are available from authors upon request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Huang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Liu, W., Burls, N.J. et al. Evolving AMOC multidecadal variability under different CO2 forcings. Clim Dyn 57, 593–610 (2021). https://doi.org/10.1007/s00382-021-05730-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-021-05730-y

Keywords

Navigation