Skip to main content

Advertisement

Log in

A multimodel comparison of centennial Atlantic meridional overturning circulation variability

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

A mechanism contributing to centennial variability of the Atlantic Meridional Overturning Circulation (AMOC) is tested with multi-millennial control simulations of several coupled general circulation models (CGCMs). These are a substantially extended integration of the 3rd Hadley Centre Coupled Climate Model (HadCM3), the Kiel Climate Model (KCM), and the Max Plank Institute Earth System Model (MPI-ESM). Significant AMOC variability on time scales of around 100 years is simulated in these models. The centennial mechanism links changes in the strength of the AMOC with oceanic salinities and surface temperatures, and atmospheric phenomena such as the Intertropical Convergence Zone (ITCZ). 2 of the 3 models reproduce all aspects of the mechanism, with the third (MPI-ESM) reproducing most of them. A comparison with a high resolution paleo-proxy for Sea Surface Temperatures (SSTs) north of Iceland over the last 4,000 years, also linked to the ITCZ, suggests that elements of this mechanism may also be detectable in the real world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bracewell R (1989) The fourier-transform. Sci Am 260(6):86

    Article  Google Scholar 

  • Cunningham SA, Kanzow T, Rayner D, Baringer MO, Johns WE, Marotzke J, Longworth HR, Grant EM, Hirschi JJM, Beal LM, Meinen CS, Bryden HL (2007) Temporal variability of the Atlantic meridional overturning circulation at 26.5 degrees N. Science 317(5840):935–938. doi:10.1126/science.1141304

    Article  Google Scholar 

  • Delworth T, Dixon K (2000) Implications of the recent trend in the Arctic/North Atlantic oscillation for the North Atlantic thermohaline circulation. J Clim 13(21):3721–3727

    Article  Google Scholar 

  • Dong B, Sutton R (2005) Mechanism of interdecadal thermohaline circulation variability in a coupled ocean-atmosphere GCM. J Clim 18(8):1117–1135

    Article  Google Scholar 

  • Ganachaud A, Wunsch C (2000) Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408(6811):453–457

    Article  Google Scholar 

  • Gordon C, Cooper C, Senior C, Banks H, Gregory J, Johns T, Mitchell J, Wood R (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16(2–3):147–168

    Article  Google Scholar 

  • Gregory J, Dixon K, Stouffer R, Weaver A, Driesschaert E, Eby M, Fichefet T, Hasumi H, Hu A, Jungclaus J, Kamenkovich I, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Sokolov A, Thorpe R (2005) A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys Res Lett 32(12). doi:10.1029/2005GL023209

  • Haug G, Hughen K, Sigman D, Peterson L, Rohl U (2001) Southward migration of the intertropical convergence zone through the Holocene. Science 293(5533):1304–1308

    Article  Google Scholar 

  • Josey S, Kent E, Taylor P (2002) Wind stress forcing of the ocean in the SOC climatology: comparisons with the NCEP-NCAR, ECMWF, UWM/COADS, and Hellerman and Rosenstein datasets. J Phys Oceanogr 32(7):1993–2019

    Article  Google Scholar 

  • Jungclaus J, Haak H, Latif M, Mikolajewicz U (2005) Arctic-North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J Clim 18(19):4013–4031

    Article  Google Scholar 

  • Jungclaus JH, Lorenz SJ, Timmreck C, Reick CH, Brovkin V, Six K, Segschneider J, Giorgetta MA, Crowley TJ, Pongratz J, Krivova NA, Vieira LE, Solanki SK, Klocke D, Botzet M, Esch M, Gayler V, Haak H, Raddatz TJ, Roeckner E, Schnur R, Widmann H, Claussen M, Stevens B, Marotzke J (2010) Climate and carbon-cycle variability over the last millennium. Clim Past Discuss 6:1009–1044

    Article  Google Scholar 

  • Kanzow T, Cunningham SA, Rayner D, Hirschi JJM, Johns WE, Baringer MO, Bryden HL, Beal LM, Meinen CS, Marotzke J (2007) Observed flow compensation associated with the MOC at 26.5 degrees N in the Atlantic. Science 317(5840):938–941. doi:10.1126/science.1141293

    Article  Google Scholar 

  • Kanzow T, Cunningham SA, Johns WE, Hirschi JJM, Marotzke J, Baringer MO, Meinen CS, Chidichimo MP, Atkinson C, Beal LM, Bryden HL, Collins J (2010) Seasonal variability of the Atlantic Meridional overturning circulation at 26.5 degrees N. J Clim 23(21):5678–5698. doi:10.1175/2010JCLI3389.1

    Article  Google Scholar 

  • Kilbourne KH, Quinn TM, Webb R, Guilderson T, Nyberg J, Winter A (2008) Paleoclimate proxy perspective on Caribbean climate since the year 1751: evidence of cooler temperatures and multidecadal variability. Paleoceanography 23(3). doi:10.1029/2008PA001598

  • Koltermann K, Sokov A, Tereschenkov V, Dobroliubov S, Lorbacher K, Sy A (1999) Decadal changes in the thermohaline circulation of the North Atlantic. Deep Sea Res Part II Top Stud Oceanogr 46(1–2):109–138

    Article  Google Scholar 

  • Latif M (2001) Tropical Pacific/Atlantic Ocean interactions at multi-decadal time scales. Geophys Res Lett 28(3):539–542

    Article  Google Scholar 

  • Latif M, Roeckner E, Mikolajewicz U, Voss R (2000) Tropical stabilization of the thermohaline circulation in a greenhouse warming simulation. J Clim 13(11):1809–1813

    Article  Google Scholar 

  • Latif M, Boening C, Willebrand J, Biastoch A, Dengg J, Keenlyside N, Schweckendiek U, Madec G (2006) Is the thermohaline circulation changing. J Clim 19(18):4631–4637

    Article  Google Scholar 

  • Mayer D, Weisberg R (1993) A description of coads surface meteorological fields and the implied sverdrup transports for the Atlantic-ocean from 30-degrees-s To 60-degrees-n. J Phys Oceanogr 23(10):2201–2221

    Article  Google Scholar 

  • McManus J, Francois R, Gherardi J, Keigwin L, Brown-Leger S (2004) Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428(6985):834–837. doi:10.1038/nature02494

    Article  Google Scholar 

  • Mignot J, Ganopolski A, Levermann A (2007) Atlantic subsurface temperatures: response to a shutdown of the overturning circulation and consequences for its recovery. J Clim 20(19):4884–4898. doi:10.1175/JCLI4280.1

    Article  Google Scholar 

  • Moreno A, Stoll H, Jimenez-Sanchez M, Cacho I, Valero-Garces B, Ito E, Edwards RL (2010) A speleothem record of glacial (25–11.6 kyr BP) rapid climatic changes from northern Iberian Peninsula. Global Plan Change 71(3–4, Sp. Iss. SI):218–231. doi:10.1016/j.gloplacha.2009.10.002

    Google Scholar 

  • Msadek R, Frankignoul C (2009) Atlantic multidecadal oceanic variability and its influence on the atmosphere in a climate model. Clim Dyn 33(1):45–62. doi:10.1007/s00382-008-0452-0

    Article  Google Scholar 

  • Pardaens A, Vellinga M, Wu P, Ingleby B (2008) Large-scale Atlantic salinity changes over the last half-century: a model-observation comparison. J Clim 21(8):1698–1720. doi:10.1175/2007JCLI1988.1

    Article  Google Scholar 

  • Park W, Latif M (2008) Multidecadal and multicentennial variability of the meridional overturning circulation. Geophys Res Lett 35(22). doi:10.1029/2008GL035779

  • Park W, Latif M (2010) Pacific and Atlantic multidecadal variability in the Kiel Climate Model. Geophys Res Lett 37. doi:10.1029/2010GL045560

  • Park W, Keenlyside N, Latif M, Stroeh A, Redler R, Roeckner E, Madec G (2009) Tropical pacific climate and its response to global warming in the Kiel climate model. J Clim 22(1):71–92. doi:10.1175/2008JCLI2261.1

    Article  Google Scholar 

  • Pope V, Gallani M, Rowntree P, Stratton R (2000) The impact of new physical parametrizations in the Hadley centre climate model: HadAM3. Clim Dyn 16(2–3):123–146

    Article  Google Scholar 

  • Proctor C, Baker A, Barnes W (2002) A three thousand year record of North Atlantic climate. Clim Dyn 19(5–6):449–454. doi:10.1007/s00383-002-0236-x

    Google Scholar 

  • Rahmstorf S (2003) The current climate. Nature 421(6924):699. doi:10.1038/421699a

    Article  Google Scholar 

  • Risebrobakken B, Jansen E, Andersson C, Mjelde E, Hevroy K (2003) A high-resolution study of Holocene paleoclimatic and paleoceanographic changes in the Nordic Seas. Paleoceanography 18(1). doi:10.1029/2002PA000764

  • Risebrobakken B, Moros M, Ivanova EV, Chistyakova N, Rosenberg R (2010) Climate and oceanographic variability in the SW Barents Sea during the Holocene. Holocene 20(4):609–621. doi:10.1177/0959683609356586

    Article  Google Scholar 

  • Sicre MA, Yiou P, Eiriksson J, Ezat U, Guimbaut E, Dahhaoui I, Knudsen KL, Jansen E, Turon JL (2008) A 4500-year reconstruction of sea surface temperature variability at decadal time-scales off North Iceland. Quat Sci Rev 27(21–22):2041–2047. doi:10.1016/j.quascirev.2008.08.009

    Article  Google Scholar 

  • Stephens G (1990) On the relationship between water-vapor over the oceans and sea-surface temperature. J Clim 3(6):634–645

    Article  Google Scholar 

  • Vellinga M, Wood RA (2008) Impacts of thermohaline circulation shutdown in the twenty-first century. Clim Change 91(1–2):43–63. doi:10.1007/s10584-006-9146-y

    Article  Google Scholar 

  • Vellinga M, Wu P (2004) Low-latitude freshwater influence on centennial variability of the Atlantic thermohaline circulation. J Clim 17(23):4498–4511

    Article  Google Scholar 

  • Wilks D (1997) Resampling hypothesis tests for autocorrelated fields. J Clim 10(1):65–82

    Article  Google Scholar 

  • Willis JK (2010) Can in situ floats and satellite altimeters detect long-term changes in Atlantic Ocean overturning? Geophys Res Lett 37. doi:10.1029/2010GL042372

  • Wood R, Vellinga M, Thorpe R (2003) Global warming and thermohaline circulation stability. Philos Transact R Soc Lond A Math Phys Eng Sci 361(1810):1961–1974. doi:10.1098/rsta.2003.1245

    Article  Google Scholar 

  • Wunsch C (2002) What is the thermohaline circulation. Science 298(5596):1179

    Article  Google Scholar 

  • Zanchettin D, Rubino A, Jungclaus JH (2010) Intermittent multidecadal-to-centennial fluctuations dominate global temperature evolution over the last millennium. Geophys Res Lett 37. doi:10.1029/2010GL043717

  • Zwiers F, VonStorch H (1995) Taking serial-correlation into account in tests of the mean. J Clim 8(2):336–351

    Article  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Community’s 7th framework programme (FP7/2007-2013) under grant agreement No. GA212643 (THOR: "Thermohaline Overturning—at Risk", 2008–2012) and was supported by the Joint DECC and Defra Hadley Centre Climate Programme, DECC/Defra (GA01101) and the German BMBF NORDATLANTIK project. The authors would like to thank Paul Halloran and Laura Jackson for valuable discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew B. Menary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menary, M.B., Park, W., Lohmann, K. et al. A multimodel comparison of centennial Atlantic meridional overturning circulation variability. Clim Dyn 38, 2377–2388 (2012). https://doi.org/10.1007/s00382-011-1172-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-011-1172-4

Keywords

Navigation