Advertisement

Climate Dynamics

, Volume 49, Issue 7–8, pp 2503–2530 | Cite as

Future precipitation in Portugal: high-resolution projections using WRF model and EURO-CORDEX multi-model ensembles

  • Pedro M. M. Soares
  • Rita M. Cardoso
  • Daniela C. A. Lima
  • Pedro M. A. Miranda
Article

Abstract

Portugal, which is located in the west limit of the Mediterranean subtropics, is a small region with a complex orography with large precipitation gradients and interannual variability. In this study, the newer and higher resolution regional climate simulations, covering Portugal, are evaluated in present climate and used to investigate the rainfall projections for the end of the twenty-first century, following the RCP4.5 and RCP8.5 emission scenarios. The EURO-CORDEX historical simulations, at 0.11° and at 0.44° resolution, are evaluated against gridded observations of precipitation, which allows the assembly of four multi-model ensembles. An extra simulation, at even higher resolution (9 km) with WRF is also analysed. In present climate, the models are able to describe the precipitation temporal and spatial patterns as well its distributions, although there is a large spread and an overestimation of larger rainfall quantiles. The multi-model ensembles show that selecting the best performing models adds quality to the overall representation of rainfall. The high-resolution simulations augment the spatial details of precipitation, but objectively do not seem to add value with respect to the coarse resolution. Regarding the RCP8.5 scenario, WRF and the multi-model ensembles consistently predict important losses of precipitation in Portugal in spring, summer and autumn, ranging from −10% and −50%. For all seasons, the changes are more severe in the southern basins. The precipitation distributions show, for all models, important reductions of the contribution from low to moderate/high precipitation bins and augments of days with strong rainfall. Furthermore, a prominent growth of high-ranking percentiles is predicted reaching values over 70% in some regions. Generally, the changes associated with the RCP4.5 scenario have the same signal and features, but with smaller magnitudes.

Keywords

Climate change Global warming South Europe Extreme precipitation Regional climate modelling Multi-model ensembles 

Notes

Acknowledgements

The authors wish to acknowledge the projects SOLAR (PTDC/GEOMET/7078/2014), SHARE (RECI/GEOMET/0380/2012) and EUPORIAS (7th Framework Programme for Research, Grant Agreement 308291) and the EarthSystems Doctoral Programme at the Faculty of Sciences of the University of Lisbon (Grant PD/BD/106008/2014) without which this work wouldn’t be possible. This work was also supported by project FCT UID/GEO/50019/2013—Instituto Dom Luiz. The authors thank IPMA, I.P. by the data provided for this work (PT02 gridded precipitation dataset). Finally, the authors acknowledge the World Climate Research Programme's Working Group on Regional Climate, and the Working Group on Coupled Modelling, former coordinating body of CORDEX and responsible panel for CMIP5. The authors also thank the climate modelling groups (listed in Table XX of this paper) for producing and making available their model output. The authors also acknowledge the Earth System Grid Federation infrastructure, an international effort led by the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison, the European Network for Earth System Modelling and other partners in the Global Organisation for Earth System Science Portals (GO-ESSP).

Supplementary material

382_2016_3455_MOESM1_ESM.docx (7.3 mb)
Supplementary material 1 (DOCX 7521 kb)

References

  1. Adam JC, Clark EA, Lettenmaier DP, Wood EF (2006) Correction of global precipitation products for orographic effects. J Climate 19(1):15–38CrossRefGoogle Scholar
  2. Arent DJ et al (2014) Key economic sectors and services. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 659–708Google Scholar
  3. Alexandru A, de Elia R, Laprise R, Separovic L, Biner Sébastien (2009) Sensitivity study of regional climate model simulations to large-scale nudging parameters. Mon Weather Rev 137:1666–1686. doi: 10.1175/2008MWR2620.1 CrossRefGoogle Scholar
  4. Allan RP, Soden BJ (2008) Atmospheric warming and the amplification of precipitation extremes. Science 321:1481–1484CrossRefGoogle Scholar
  5. Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419:224–232CrossRefGoogle Scholar
  6. Alpert P et al (2002) The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values. Geophys Res Lett 29(11):311–314CrossRefGoogle Scholar
  7. Anderson TW, Darling DA (1954) A test of goodness of fit. J Am Stat Assoc 49:765–769CrossRefGoogle Scholar
  8. Argüeso D, Hidalgo-Muñoz JM, Gámiz-Fortis SR, Esteban-Parra MJ, Castro-Díez Y (2012) High-resolution projections of mean and extreme precipitation over Spain using the WRF model (2070–2099 versus 1970–1999). J Geophys Res 117:D12108. doi: 10.1029/2011JD017399 CrossRefGoogle Scholar
  9. Belo-Pereira M, Dutra E, Viterbo P (2011) Evaluation of global precipitation datasets over the Iberian Peninsula. J Geophys Res 116:D20101. doi: 10.1029/2010JD015481 CrossRefGoogle Scholar
  10. Boberg F, Berg P, Thejll P, Gutowski WJ, Christensen JH (2009) Improved confidence in climate change projections of precipitation evaluated using daily statistics from the PRUDENCE ensemble. Clim Dyn 32(7–8):1097–1106. doi: 10.1007/s00382-008-0446-y CrossRefGoogle Scholar
  11. Boberg F, Berg P, Thejll P, Gutowski WJ, Christensen JH (2010) Improved confidence in climate change projections of precipitation further evaluated using daily statistics from ENSEMBLES models. Clim Dyn 35:1509–1520CrossRefGoogle Scholar
  12. Cardoso RM, Soares PMM, Miranda PMA, Belo-Pereira M (2013) WRF high resolution simulation of Iberian mean and extreme precipitation climate. Int J Climatol 33:2591–2608. doi: 10.1002/joc.3616 CrossRefGoogle Scholar
  13. Cardoso RM et al (2016) The impact of climate change on the Iberian low-level wind jet: EURO-CORDEX regional climate simulation. Tellus A. doi: 10.3402/tellusa.v68.29005 Google Scholar
  14. Casanueva A, Kotlarski S, Herrera S, Fernández J, Gutiérrez J, Boberg B, Colette A, Christensen OB, Goergen K, Jacob D, Keuler K, Nikulin G, Teichmann C, Vautard R (2015) Daily precipitation statistics in a EURO-CORDEX RCM ensemble: added value of raw and bias-corrected high-resolution simulations. Clim Dyn. doi: 10.1007/s00382-015-2865-x Google Scholar
  15. Chang EKM, Guo Y, Xia X (2012) CMIP5 multimodel ensemble projection of storm track change under global warming. J Geophys Res 117:D23118. doi: 10.1029/2012JD018578 Google Scholar
  16. Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of the century. Clim Change 81:7–30CrossRefGoogle Scholar
  17. Christensen J, Kjellstrom E, Giorgi F, Lenderink G, Rummukainen M (2010) Weight assignment in regional climate models. Clim Res 44:179–194CrossRefGoogle Scholar
  18. Christensen OB, Drews M, Christensen JH, Dethloff K, Ketelsen K, Hebestadt I, Rinke A (2006) The HIRHAM regional climate model version 5(β). Tech Rep 06-17. DMI, CopenhagenGoogle Scholar
  19. Colin J, Déqué M, Radu R, Somot S (2010) Sensitivity study of heavy precipitation in Limited Area Model climate simulations: influence of the size of the domain and the use of the spectral nudging technique. Tellus A 62(5):591–604. doi: 10.1111/j.1600-0870.2010.00467.x CrossRefGoogle Scholar
  20. Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  21. Demortier L (1995) Assessing the significance of a deviation in the tail of a distribution. CDF note 3419Google Scholar
  22. Déqué M (2010) Regional climate simulation with a mosaic of RCMs. Meteorol Z 19(3):259–266. doi: 10.1127/0941-2948/2010/0455 CrossRefGoogle Scholar
  23. Déqué M, Jones RG, Wild M, Giorgi F, Christensen JH, Hassell DC, Vidale PL, Röckel B, Jacob D, Kjellström E, de Castro M, Kucharski F, van den Hurk B (2005) Global high resolution versus limited-area model scenarios over Europe: results from the PRUDENCE project. Clim Dyn 25:653–670. doi: 10.1007/s00382-005-0052-1 CrossRefGoogle Scholar
  24. Déqué M, Rowell DP, Lüthi D, Giorgi F, Christensen JH, Rockel B, Jacob D, Kjellström E, Castro MD, van den Hurk B (2007) An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections. Clim Change 81:53–70CrossRefGoogle Scholar
  25. Di Luca A, de Elia R, Laprise R (2012) Potential for added value in precipitation simulated by high-resolution nested regional climate models and observations. Clim Dyn 38(5–6):1229–1247CrossRefGoogle Scholar
  26. Diaconescu EP, Laprise R, Sushama L (2007) The impact of lateral boundary data errors on the simulated climate of a nested regional climate model. Clim Dyn 28:333–350CrossRefGoogle Scholar
  27. Dickinson RE, Errico RM, Giorgi F, Bates GT (1989) A regional climate model for the western United States. Clim Change 15:383–422Google Scholar
  28. Doblas-Reyes FJ, Hagedorn R, Palmer TN (2005) The rationale behind the success of multi-model ensembles in seasonal forecasting. Part II: calibration and combination. Tellus A 57:234–252Google Scholar
  29. Evans JP, Ji F, Abramowitz G, Ekstrom M (2013) Optimally choosing small ensemble members to produce robust climate simulations. Environ Res Lett 8:044050. doi: 10.1088/1748-9326/8/4/044050 CrossRefGoogle Scholar
  30. Ferro C, Hannachi A, Stephenson D (2005) Simple nonparametric techniques for exploring changing probability distributions of weather. J Clim 18:4344–4354CrossRefGoogle Scholar
  31. Feser F, Rockel B, von Storch H, Winterfeldt J, Zahn M (2011) Regional climate models add value to global model data: a review and selected examples. Bull Am Meteorol Soc 92:1181–1192CrossRefGoogle Scholar
  32. Flaounas E, Bastin S, Janicot S (2011) Regional climate modelling of the 2006 West African monsoon: sensitivity to convection and planetary boundary layer parameterisation using WRF. Clim Dyn 36:1083–1105. doi: 10.1007/s00382-010-0785-3 CrossRefGoogle Scholar
  33. Frei C, Christensen JH, Déqué M, Jacob D, Jones RG, Vidale PL (2003) Daily precipitation statistics in regional climate models: evaluation and intercomparison for the European Alps. J Geophys Res 108(D3):4124. doi: 10.1029/2002JD002287 CrossRefGoogle Scholar
  34. Frei C, Scholl R, Fukutome S, Schmidli J, Vidale PL (2006) Future change of precipitation extremes in Europe: intercomparison of scenarios from regional climate models. J Geophys Res 111:D06105. doi: 10.1029/2005JD005965 CrossRefGoogle Scholar
  35. Gao X, Pal JS, Giorgi F (2006) Projected changes in mean and extreme precipitation over the Mediterranean region from a high resolution double nested RCM simulation. Geophys Res Lett 33:L03706. doi: 10.1029/2005GL024954 CrossRefGoogle Scholar
  36. Giorgi F (1990) Simulation of regional climate using a limited area model nested in a general circulation model. J Clim 3:941–963. doi: 10.1175/1520-0442(1990)003<0941:SORCUA>2.0.CO;2 CrossRefGoogle Scholar
  37. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Global Planet Change 63:90–104. doi: 10.1016/j.gloplacha.2007.09.005 CrossRefGoogle Scholar
  38. Giorgi F, Mearns LO (1991) Approaches to the simulation of regional climate change: a review. Rev Geophys 29:191–216CrossRefGoogle Scholar
  39. Giorgi F, Mearns LO (1999) Introduction to special section: regional climate modeling revisited. J Geophys Res 104(D6):6335–6352CrossRefGoogle Scholar
  40. Giorgi F, Mearns LO (2003) Probability of regional climate change based on the reliability ensemble averaging (REA) method. Geophys Res Lett 30:1629. doi: 10.1029/2003GL017130 CrossRefGoogle Scholar
  41. Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. Bull World Meteorol Org 58:175–183Google Scholar
  42. Gómez-Navarro JJ, Montávez JP, Jerez S, Jiménez-Guerrero P, Zorita E (2012) What is the role of the observational dataset in the evaluation and scoring of climate models? Geophys Res Lett 39(24):L24701CrossRefGoogle Scholar
  43. Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. BAMS 90:1095. doi: 10.1175/2009BAMS2607.1 CrossRefGoogle Scholar
  44. Haylock M, Hofstra N, Klein-Tank A, Klok EJ, Jones P, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113:D20119. doi: 10.1029/2008JD010201 CrossRefGoogle Scholar
  45. Hazeleger W et al (2010) EC-Earth: a seamless earth-system prediction approach in action. Bull Am Meteorol Soc 91:1357–1363. doi: 10.1175/2010BAMS2877.1 CrossRefGoogle Scholar
  46. Heikkila U, Sandvik A, Sorterberg A (2010) Dynamical downscaling or ERA-40 in complex terrain using WRF regional climate model. Clim Dyn. doi: 10.1007/s00382-010-0928-6 Google Scholar
  47. Herrera S, Fita L, Fernández J, Gutiérrez JM (2010) Evaluation of the mean and extreme precipitation regimes from the ENSEMBLES regional climate multimodel simulations over Spain. J Geophys Res 115:D21117. doi: 10.1029/2010JD013936 CrossRefGoogle Scholar
  48. Hofstra N, New M, McSweeney C (2010) The influence of interpolation and station network density on the distribution and extreme trends of climate variables in gridded data. Clim Dyn 35:841–858CrossRefGoogle Scholar
  49. IPCC (2013) Climate change 2013: The physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental. Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  50. Jacob et al (2014) EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg Environ Change 14:563–578CrossRefGoogle Scholar
  51. Jerez S, Montavez JP, Gomez-Navarro JJ, Lorente-Plazas R, Garcia-Valero JA, Jimenez-Guerrero P (2013) A multi-physics ensemble of regional climate change projections over the Iberian Peninsula. Clim Dyn 41(7–8):1749–1768CrossRefGoogle Scholar
  52. Katragkou E et al (2015) Regional climate hindcast simulations within EURO-CORDEX: evaluation of a WRF multi-physics ensemble. Geosci Model Dev 8:603–618. doi: 10.5194/gmd-8-603-2015 CrossRefGoogle Scholar
  53. Kendon EJ, Jones RG, Kjellström E, Murphy JM (2010) Using and designing GCM–RCM ensemble regional climate projections. J Clim 23:6485–6503. doi: 10.1175/2010JCLI3502.1 CrossRefGoogle Scholar
  54. Kerkhoff C, Künsch H, Schär C (2014) Assessment of bias assumptions for climate models. J Clim 27(17):6799–6918CrossRefGoogle Scholar
  55. Kerkhoff C, Künsch HR, Schär C (2015) A Bayesian hierarchical model for heterogeneous RCM–GCM multimodel ensembles. J Clim 28:6249–6266. doi: 10.1175/JCLI-D-14-00606.1 CrossRefGoogle Scholar
  56. Kim J, Waliser DE, Mattmann CA et al (2014) Evaluation of the CORDEX-Africa multi-RCM hindcast: systematic model errors. Clim Dyn 42:1189. doi: 10.1007/s00382-013-1751-7 CrossRefGoogle Scholar
  57. Klok EJ, Klein Tank AMG (2009) Updated and extended European dataset of daily climate observations. Int J Climatol 29:1182–1191. doi: 10.1002/joc.1779 CrossRefGoogle Scholar
  58. Knutti and Sedlàcek (2013) Robustness and uncertainties in the new CMIP5 climate model projections. Nat Clim Change 3:369–373. doi: 10.1038/nclimate1716 CrossRefGoogle Scholar
  59. Kotlarski S et al (2014) Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble. Geosci Model Dev 7:1297–1333. doi: 10.5194/gmd-7-1297-2014 CrossRefGoogle Scholar
  60. Laprise R (2008) Regional climate modelling. J Comp Phys. Special issue on Predicting Weather, Climate and Extreme Events 227:3641–3666Google Scholar
  61. Lelieveld J et al (2012) Climate change and impacts in the Eastern Mediterranean and the Middle East. Clim Change 114(3):667–687. doi: 10.1007/s10584-012-0418-4 CrossRefGoogle Scholar
  62. Lenderink G, van Meijgaard E (2008) Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat Geosci 1:511–514. doi: 10.1038/ngeo262 CrossRefGoogle Scholar
  63. Leung LR, Mearns LO, Giorgi F, Wilby RL (2003) Regional climate research: needs and opportunities. Bull Am Meteorol Soc 84:89–95CrossRefGoogle Scholar
  64. Li F, Rosa D, Collins WD, Wehner MF (2012) “Super-parameterization”: a better way to simulate regional extreme precipitation? J Adv Model Earth Syst 4:M04002. doi: 10.1029/2011MS000106 CrossRefGoogle Scholar
  65. Liang XZ, Kunkel KE, Meehl GA, Jones RG, Wang JX (2008) Regional climate models downscaling analysis of general circulation models present climate biases propagation into future change projections. Geophys Res Lett 35(8):L08709CrossRefGoogle Scholar
  66. López-Moreno JI, Vicente-Serrano SM, Angulo-Martinez M, Begueria S, Kenawya A (2010) Trends in daily precipitation on the northeastern Iberian Peninsula, 1955–2006. Int J Climatol 30:1026–1041. doi: 10.1002/joc.1945 Google Scholar
  67. Magarreiro C, Cardoso RM, Widmann M, Brito MC, Soares PMM (2016) Combining high resolution dynamical downscaling and quantile mapping for future projections of the Iberian solar resource. Int J ClimatolGoogle Scholar
  68. Maraun D et al (2010) Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user. Rev Geophys 48(3):RG3003. doi: 10.1029/2009RG000314 CrossRefGoogle Scholar
  69. McGregor JL (1997) Regional climate modelling. Meteorol Atmos Phys 63:105–117CrossRefGoogle Scholar
  70. McSweeney CF, Jones RG, Lee RW et al (2015) Selecting CMIP5 GCMs for downscaling over multiple regions. Clim Dyn 44:3237. doi: 10.1007/s00382-014-2418-8 CrossRefGoogle Scholar
  71. Meehl GA, Stocker TF, Collins WD, Friedlingstein P et al (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the 4th Assessment Report of the IPCC. Cambridge University Press, Cambridge, pp 747–846Google Scholar
  72. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756CrossRefGoogle Scholar
  73. Nakicenovic N, Alcamo J, Davis J, de Vries B, Fenhann J, Gaffin S, Gregory K, Grübler A, Jung TY, Kram T, Lebre La Rovere E, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner H-H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (2000) Special report on emission scenarios. A special report of Working Group III for the Intergovernmental Panel on Climate Change. Cambridge University Press, New YorkGoogle Scholar
  74. Nikulin G, Kjellström E, Hansson U, Strandberg G, Ullerstig A (2011) Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus A 63:41–55. doi: 10.1111/j.1600-0870.2010.00466.x CrossRefGoogle Scholar
  75. Pall P, Allen MR, Stone DA (2007) Testing the Clausius–Clapeyron constraint on changes in extreme precipitation under CO2 warming. Clim Dyn 28:351–363CrossRefGoogle Scholar
  76. Palmer TN, Räisänen J (2002) Quantifying the risk of extreme seasonal precipitation in a changing climate. Nature 415:512–514CrossRefGoogle Scholar
  77. Perkins SE, Pitman AJ (2009) Do weak AR4 models bias projections of future climate changes over Australia? Clim Change 93:527–558CrossRefGoogle Scholar
  78. Perkins SE, Pitman AJ, Holbrook NJ, McAneney J (2007) Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functions. J Clim 20:4356–4376CrossRefGoogle Scholar
  79. Prein A, Gobiet A (2016) Impacts of uncertainties in European gridded precipitation observations on regional climate analysis. Int J Climatol. doi: 10.1002/joc.4706 Google Scholar
  80. Prein AF, Holland GJ, Rasmussen RM, Done J, Ikeda K, Clark MP, Liu CH (2013) Importance of regional climate model grid spacing for the simulation of heavy precipitation in the Colorado headwaters. J Clim 26(13):4848–4857CrossRefGoogle Scholar
  81. Prein et al (2015) Precipitation in the EURO-CORDEX 0.11° and 0.44° simulations: high resolution, high benefits? Clim Dyn. doi: 10.1007/s00382-015-2589-y Google Scholar
  82. Rajczak J, Pall P, Schär C (2013) Projections of extreme precipitation events in regional climate simulations for Europe and the Alpine Region. J Geophys Atmos 118:3610–3626. doi: 10.1002/jgrd.50297 CrossRefGoogle Scholar
  83. Randall DA, Wood RA et al (2007) Climate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) climate change 2007: The physical science basis. Contribution of working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, NYGoogle Scholar
  84. Rauscher SA et al (2010) Resolution effects on regional climate model simulations of seasonal precipitation over Europe. Clim Dyn 35(4):685–711CrossRefGoogle Scholar
  85. Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P (2011) RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Clim Change 109:33–57. doi: 10.1007/s10584-011-0149-y CrossRefGoogle Scholar
  86. Rios-Entenza A, Soares PMM, Trigo RM, Cardoso RM, Miguez-Macho G (2014) Precipitation recycling in the Iberian Peninsula: spatial patterns and temporal variability. J Geophys Res atmos. doi:  10.1002/2013JD021274
  87. Rockel B, Will A, Hense A (2008) The regional climate model COSMO-CLM (CCLM). Meteorol Z 17:347–348. doi: 10.1127/0941-2948/2008/0309 CrossRefGoogle Scholar
  88. Rummukainen M (2010) State-of-the-art with regional climate models. Clim Change 1:82–96Google Scholar
  89. Samuelsson P, Jones CG, Willén U, Ullerstig A, Gollvik S, Hansson ULF, Jansson C, Kjellström E, Nikulin G, Wyser K (2011) The Rossby Centre Regional Climate Model RCA3: model description and performance. Tellus Ser A 63(1):4–23CrossRefGoogle Scholar
  90. Sánchez E, Gallardo C, Gaertner M, Arribas A, Castro M (2004) Future climate extreme events in the Mediterranean simulated by a regional climate model: a first approach. Global Planet Change 44(1–4):163–180. doi: 10.1016/j.gloplacha.2004.06.010 CrossRefGoogle Scholar
  91. Semmler T, Jacob D (2004) Modeling extreme precipitation events—a climate change simulation for Europe. Global Planet Change 44:119–127CrossRefGoogle Scholar
  92. Sillmann J, Kharin VV, Zwiers FW, Zhang X, Bronaugh D (2013a) Climate extremes indices in the CMIP5 multimodel ensemble: part 1. Model evaluation in the present climate. J Geophys Res Atmos 118:1716–1733. doi: 10.1002/jgrd.50203 CrossRefGoogle Scholar
  93. Sillmann J, Kharin VV, Zwiers FW, Zhang X, Bronaugh D (2013b) Climate extremes indices in the CMIP5 multimodel ensemble: part 2. Future climate projections. J Geophys Res Atmos 118:2473–2493. doi: 10.1002/jgrd.50188 CrossRefGoogle Scholar
  94. Skamarock WC et al (2008) A description of the advanced research WRF version 3. NCAR Tech. Note TN-475_STRGoogle Scholar
  95. Soares PMM, Cardoso RM, Miranda PMA, de Medeiros J, Belo-Pereira M, Espirito-Santo F (2012a) WRF high resolution dynamical downscaling of ERA-Interim for Portugal. Clim Dyn 39:2497–2522. doi: 10.1007/s00382-012-1315-2 CrossRefGoogle Scholar
  96. Soares PMM, Cardoso RM, Miranda PMA, Viterbo P, Belo-Pereira M (2012b) Assessment of the ENSEMBLES regional climate models in the representation of precipitation variability and extremes over Portugal. J Geophys Res 117:D07114. doi: 10.1029/2011JD016768 CrossRefGoogle Scholar
  97. Soares PMM, Cardoso RM, Semedo A, Chinita MJ, Ranjha R (2014) Climatology of the Iberia coastal lowlevel wind jet: weather research forecasting model high- resolution results. Tellus A 66:22377. doi: 10.3402/tellusa.v66.22377 CrossRefGoogle Scholar
  98. Soares PMM, Cardoso RM, Ferreira JJ, Miranda PMA (2015) Climate change impact on Portuguese precipitation: ENSEMBLES regional climate model results. Clim Dyn 45:1771–1787. doi: 10.1007/s00382-014-2432-x CrossRefGoogle Scholar
  99. Soares PMM, Lima DCA, Cardoso RM, Semedo A (2016) High resolution projections for the western Iberian coastal low level jet in a changing climate. Clim Dyn. doi: 10.1007/s00382-016-3397-8 Google Scholar
  100. Suklitsch M, Gobiet A, Leuprecht A, Frei C (2008) High resolution sensitivity studies with the regional climate model CCLM in the alpine region. Meteorol Z 17:467–476CrossRefGoogle Scholar
  101. Tapiador FJ, Sánchez E, Gaertner MA (2007) Regional changes in precipitation in Europe under an increased greenhouse emissions scenario. Geophys Res Lett 34:1–6. doi: 10.1029/2006GL029035 CrossRefGoogle Scholar
  102. Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections. Philos Trans R Soc A Math Phys Eng Sci 365(1857):2053–2075CrossRefGoogle Scholar
  103. Thober S, Samaniego L (2014) Robust ensemble selection by multivariate evaluation of extreme precipitation and temperature characteristics. J Geophys Res Atmos 119:594–613. doi: 10.1002/2013JD020505 CrossRefGoogle Scholar
  104. Uppala SM et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012CrossRefGoogle Scholar
  105. van der Linden P, Mitchell J (eds) (2009) ENSEMBLES: climate change and its impacts: Summary of research and results from the ENSEMBLES project. Report, Met Office Hadley Centre, Exeter, UKGoogle Scholar
  106. van Meijgaard E, van Ulft L, van de Berg W, Bosveld F, van den Hurk B, Lenderink G, Siebesma A (2008) The KNMI regional atmospheric climate model RACMO, version 2.1. Tech. Rep 302. Koninklijk Nederlands Meteorologisch Instituut, De Bilt, NetherlandsGoogle Scholar
  107. van Vuuren DP, Edmonds J, Kainuma M et al (2011) The representative concentration pathways: an overview. Clim Change 109:5. doi: 10.1007/s10584-011-0148-z CrossRefGoogle Scholar
  108. Vautard et al (2013) The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project. Clim Dyn 41:2555–2575CrossRefGoogle Scholar
  109. Wang Y, Leung LR, McGregor JL, Lee DK, Wang WC, Ding Y, Kimura F (2004) Regional climate modeling: progress, challenges and prospects. J Meteorol Soc Jpn 82:1599–1628CrossRefGoogle Scholar
  110. Weedon GP, Gomes S, Viterbo P, Shuttleworth J, Blyth E, Österle H, Adam JC, Bellouin N, Boucher O, Best M (2011) Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century. J Hydrometeorol 12:823–848. doi: 10.1175/2011JHM1369.1 CrossRefGoogle Scholar
  111. Weigel A, Knutti R, Liniger M, Appenzeller C (2010) Risks of model weighting in multi-model climate projections. J Clim 23(15):4175–4191. doi: 10.1175/2010JCLI3594.1 CrossRefGoogle Scholar
  112. Westra S, Fowler H, Evans JP, Alexander LV, Berg P, Johnson F, Kendon EJ, Lenderink G, Roberts NM (2014) Future changes to the intensity and frequency of short-duration extreme rainfall. Rev Geophys. doi: 10.1002/2014RG000464 Google Scholar
  113. Wilks DS (2006) Statistical methods in the atmospheric sciences. International geophysics series, vol 91, 2nd edn. Academic Press, New YorkGoogle Scholar
  114. Willmott CJ, Robeson SM, Matsuura K (2012) A refined index of model performance. Int J Climatol 32:2088–2094. doi: 10.1002/joc.2419 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Pedro M. M. Soares
    • 1
  • Rita M. Cardoso
    • 1
  • Daniela C. A. Lima
    • 1
  • Pedro M. A. Miranda
    • 1
  1. 1.Faculdade de Ciências, Instituto Dom LuizUniversidade de LisboaLisbonPortugal

Personalised recommendations