Skip to main content

Advertisement

Log in

Climate change and the Portuguese precipitation: ENSEMBLES regional climate models results

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

In Portugal, the precipitation regimes present one of the highest volumes of extreme precipitation occurrence in Europe, and one of the largest mean precipitation spatial gradient (annual observed values above 2,500 mm in the NW and under 400 mm in the SE). Moreover, southern Europe is one of the most vulnerable regions in the world to climate change. In the ENSEMBLES framework many climate change assessment studies were performed, but none focused on Portuguese precipitation. An extensive evaluation and ranking of the RCMs results addressing the representation of mean precipitation and frequency distributions was performed through the computation of statistical errors and frequency distribution scores. With these results, an ensemble was constructed; giving the same weight to mean precipitation and distribution model skills. This ensemble reveals a good ability to describe the precipitation regime in Portugal, and enables the evaluation of the eventual impact of climate change on Portuguese precipitation according to the A1B scenario. The mean seasonal precipitation is expected to decrease substantially in all seasons, excluding winter. This reduction is statistically significant; it spans from less than 20 % in the north to 40 % in the south in the intermediate seasons, and is above 50 % in the largest portion of mainland in summer. At a basin level the precipitation diminishes in all months for all the basins with exception of December. Total precipitation PDFs reveal an important decrease of the contribution from low to moderate/high precipitation bins, and a striking rise for days with extreme rainfall, up to 30 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alpert P et al (2002) The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values. Geophys Res Lett 29(11):311–314

    Google Scholar 

  • Argüeso D, Hidalgo-Muñoz JM, Gámiz-Fortis SR, Esteban-Parra MJ, Castro-Díez Y (2012) High-resolution projections of mean and extreme precipitation over Spain using the WRF model (2070–2099 versus 1970–1999). J Geophys Res 117:D12108. doi:10.1029/2011JD017399

    Google Scholar 

  • Belo-Pereira M, Dutra E, Viterbo P (2011) Evaluation of global precipitation datasets over the Iberian Peninsula. J Geophys Res 116:D20101. doi:10.1029/2010JD015481

    Article  Google Scholar 

  • Bishop CH, Abramowitz G (2013) Climate model dependence and the replicate Earth paradigm. Clim Dyn 41:885–900

    Article  Google Scholar 

  • Boberg F, Berg P, Thejll P, Gutowski WJ, Christensen JH (2009) Improved confidence in climate change projections of precipitation evaluated using daily statistics from the PRUDENCE ensemble. Clim Dyn 32(7–8):1097–1106. doi:10.1007/s00382-008-0446-y

    Article  Google Scholar 

  • Boberg F, Berg P, Thejll P, Gutowski WJ, Christensen JH (2010) Improved confidence in climate change projections of precipitation further evaluated using daily statistics from ENSEMBLES models. Clim Dyn 35:1509–1520

    Article  Google Scholar 

  • Cardoso RM, Soares PMM, Miranda PMA, Belo-Pereira M (2013) WRF high resolution simulation of Iberian mean and extreme precipitation climate. Int J Climatol 33:2591–2608. doi:10.1002/joc.3616

    Article  Google Scholar 

  • Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of the century. Clim Change 81:7–30

    Article  Google Scholar 

  • Christensen O, Drews M, Christensen J, Dethloff K, Ketelsen K, Hebestadt I, Rinke A (2006) The HIRHAM regional climate model version 5(b). Tech Rep 06-17. Dan Meteorol Inst. Copenhagen

  • Christensen J, Kjellstrom E, Giorgi F, Lenderink G, Rummukainen M (2010) Weight assignment in regional climate models. Clim Res 44:179–194

    Article  Google Scholar 

  • Collins M, Booth B, Harris G, Murphy J, Sexton D, Webb M (2006) Towards quantifying uncertainty in transient climate change. Clim Dyn 27(2–3):127–147. doi:10.1007/s00382-006-0121-0

    Article  Google Scholar 

  • Déqué M, Jones RG, Wild M, Giorgi F, Christensen JH, Hassell DC, Vidale PL, Röckel B, Jacob D, Kjellström E, de Castro M, Kucharski F, van den Hurk B (2005) Global high resolution versus limited-area model scenarios over Europe: results from the PRUDENCE project. Clim Dyn 25:653–670. doi:10.1007/s00382-005-0052-1

    Article  Google Scholar 

  • Déqué M, Rowell DP, Lüthi D, Giorgi F, Christensen JH, Rockel B, Jacob D, Kjellström E, Castro MD, van den Hurk B (2007) An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections. Clim Change 81:53–70

    Article  Google Scholar 

  • Diaconescu EP, Laprise R, Sushama L (2007) The impact of lateral boundary data errors on the simulated climate of a nested regional climate model. Clim Dyn 28:333–350

    Article  Google Scholar 

  • Evans JP, Ji F, Abramowitz G, Ekstrom M (2013) Optimally choosing small ensemble members to produce robust climate simulations. Environ Res Lett 8:044050. doi:10.1088/1748-9326/8/4/044050

    Article  Google Scholar 

  • Ferro C, Hannachi A, Stephenson D (2005) Simple nonparametric techniques for exploring changing probability distributions of weather. J Clim 18:4344–4354

    Article  Google Scholar 

  • Frei C, Christensen JH, Déqué M, Jacob D, Jones RG, Vidale PL (2003) Daily precipitation statistics in regional climate models: evaluation and intercomparison for the European Alps. J Geophys Res 108(D3):4124. doi:10.1029/2002JD002287

    Article  Google Scholar 

  • Frei C, Scholl R, Fukutome S, Schmidli J, Vidale PL (2006) Future change of precipitation extremes in Europe: intercomparison of scenarios from regional climate models. J Geophys Res 111:D06105. doi:10.1029/2005JD005965

    Google Scholar 

  • Gao X, Pal JS, Giorgi F (2006) Projected changes in mean and extreme precipitation over the Mediterranean region from a high resolution double nested RCM simulation. Geophys Res Lett 33:L03706. doi:10.1029/2005GL024954

    Google Scholar 

  • Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33:L08707. doi:10.1029/2006GL025734

    Google Scholar 

  • Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63:90–104. doi:10.1016/j.gloplacha.2007.09.005

    Article  Google Scholar 

  • Giorgi F, Mearns LO (2003) Probability of regional climate change based on the Reliability Ensemble Averaging (REA) method. Geophys Res Lett 30:1629. doi:10.1029/2003GL017130.12

    Article  Google Scholar 

  • Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. Bull World Meteorol Organ 58:175–183

    Google Scholar 

  • Gleckler P, Taylor K, Doutriaux C (2008) Performance metrics for climate models. J Geophys Res Atmos 113:D06104

    Article  Google Scholar 

  • Gómez-Navarro JJ, Montávez JP, Jerez S, Jiménez-Guerrero P, Zorita E (2012) What is the role of the observational dataset in the evaluation and scoring of climate models? Geophys Res Lett 39(24):L24701

    Google Scholar 

  • Gutowski WJ, Takle ES, Kozak K, Patton JC, Arritt RW, Christensen JH (2007) A possible constraint on regional precipitation intensity changes under global warming. J Hydrometeorol 8(6):1382–1396. doi:10.1175/2007JHM817.1

    Article  Google Scholar 

  • Haugen J, Haakenstad H (2005) Validation of HIRHAM version 2 with 50 km and 25 km resolution. Gen Tech Rep 9 Norw Meteorol Inst. Oslo

  • Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. BAMS 90:1095. doi:10.1175/2009BAMS2607.1

    Article  Google Scholar 

  • Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113:D20119. doi:10.1029/2008JD010201

    Article  Google Scholar 

  • Herrera S, Fita L, Fernández J, Gutiérrez JM (2010) Evaluation of the mean and extreme precipitation regimes from the ENSEMBLES regional climate multimodel simulations over Spain. J Geophys Res 115:D21117. doi:10.1029/2010JD013936

    Article  Google Scholar 

  • Herrera S, Gutiérrez J, Ancell R, Pons M, Frías M, Fernández J (2012) Development and analysis of a 50 year high-resolution daily gridded precipitation dataset over Spain (Spain02). Int J Climatol 32:74–85. doi:10.1002/joc.2256

    Article  Google Scholar 

  • Hewitt CD (2005) The ENSEMBLES project: providing ensemble based predictions of climate changes and their impacts. EGGS Newsl 13:22–25

    Google Scholar 

  • Hofstra N, New M, McSweeney C (2010) The influence of interpolation and station network density on the distribution and extreme trends of climate variables in gridded data. Clim Dyn 35:841–858

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the intergovernmental. Panel on Climate Change. Cambridge University Press, Cambridge, 1535 pp

  • Jacob D et al (2001) A comprehensive model inter-comparison study investigating the water budget during the BALTEX-PIDCAP period. Meteorol Atmos Phys 77(1–4):19–43. doi:10.1007/s007030170015

    Article  Google Scholar 

  • Jaeger E, Anders I, Luthi D, Rockel B, Schar C, Seneviratne S (2008) Analysis of ERA40-driven CLM simulations for Europe. Meteorol Z 17(4):349–367. doi:10.1127/0941-2948/2008/0301

    Article  Google Scholar 

  • Jerez S, Montavez JP, Gomez-Navarro JJ, Jimenez PA, Jimenez-Guerrero P, Lorente R, Gonzalez-Rouco JF (2012) The role of the land-surface model for climate change projections over the Iberian Peninsula. J Geophys Res Atmos 117(D1):1984–2012

    Article  Google Scholar 

  • Jerez S, Montavez JP, Gomez-Navarro JJ, Lorente-Plazas R, Garcia-Valero JA, Jimenez-Guerrero P (2013) A multi-physics ensemble of regional climate change projections over the Iberian Peninsula. Clim Dyn 41(7–8):1749–1768

    Article  Google Scholar 

  • King AD, Alexander LV, Donat MG (2013) The efficacy of using gridded data to examine extreme rainfall characteristics: a case study for Australia. Int J Climatol 33(10):2376–2387. doi:10.1002/joc.3588

    Article  Google Scholar 

  • Kjellström E, Boberg F, Castro M, Christensen J, Nikulin G, Sánchez E (2010) Daily and monthly temperature and precipitation statistics as performance indicators for regional climate models. Clim Res 44(2–3):135–150

    Article  Google Scholar 

  • Klein Tank AMG et al (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int J Climatol 22:1441–1453

    Article  Google Scholar 

  • Klok EJ, Klein Tank AMG (2009) Updated and extended European dataset of daily climate observations. Int J Climatol 29:1182–1191. doi:10.1002/joc.1779

    Article  Google Scholar 

  • Knutti R (2010) The end of model democracy? Clim Change 102:395–404

    Article  Google Scholar 

  • Liang XZ, Kunkel KE, Meehl GA, Jones RG, Wang JX (2008) Regional climate models downscaling analysis of general circulation models present climate biases propagation into future change projections. Geophys Res Lett 35(8):L08709

    Google Scholar 

  • Mariotti A, Zeng N, Yoon J, Artale V, Navarra A, Alpert P, Li LZX (2008) Mediterranean water cycle changes: transition to drier 21st century conditions in observations and CMIP3 simulations. Environ Res Lett 3:044001. doi:10.1088/1748-9326/3/4/044001

    Article  Google Scholar 

  • Martin-Vide J (2004) Spatial distribution of a daily precipitation concentration index in peninsular Spain. Int J Climatol 24:959–971. doi:10.1002/joc.1030

    Article  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P et al (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the 4th assessment report of the IPCC. Cambridge University Press, Cambridge, pp 747–846

  • Miranda PMA, Coelho F, Tomé AR, Valente MA, Carvalho A, Pires C, Pires HO, Cabrinha VC, Ramalho C (2002) 20th century Portuguese climate and climate scenarios. In: Santos FD, Forbes K, Moita R (eds) Climate change in Portugal: scenarios, impacts and adaptation measures 2–83 Gradiva

  • Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated highresolution grids. Int J Climatol 25:693–712

    Article  Google Scholar 

  • Nakicenovic N, Alcamo J, Davis J, de Vries B, Fenhann J, Gaffin S, Gregory K, Grübler A, Jung TY, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner H-H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (2000) Special report on emission scenarios. A special report of Working Group III for the Intergovernmental Panel on Climate Change. Cambridge University Press, New York

  • Nikulin G, Kjellström E, Hansson U, Strandberg G, Ullerstig A (2011) Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus A 63:41–55. doi:10.1111/j.1600-0870.2010.00466.x

    Article  Google Scholar 

  • Osborn TJ, Hulme M (1997) Development of a relationship between station and grid-box rainday frequencies for climate model evaluation. J Clim 10:1885–1908. doi:10.1175/1520-0442(1997)010<1885:DOARBS>2.0.CO;2

    Article  Google Scholar 

  • Pal J et al (2007) Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bull Am Meteorol Soc 88:1395–1409. doi:10.1175/BAMS-88-9-1395

    Article  Google Scholar 

  • Palmer TN, Räisänen J (2002) Quantifying the risk of extreme seasonal precipitation in a changing climate. Nature 415:512–514

    Article  Google Scholar 

  • Paredes D, Trigo RM, Garcia-Herrera R, Trigo IF (2006) Understanding precipitation changes in Iberia in early Spring: weather typing and storm-tracking approaches. J Hydrometeorol 7:101–113

    Article  Google Scholar 

  • Perkins SE, Pitman AJ (2009) Do weak AR4 models bias projections of future climate changes over Australia? Clim Change 93:527–558

    Article  Google Scholar 

  • Perkins SE, Pitman AJ, Holbrook NJ, McAneney J (2007) Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functions. J Clim 20:4356–4376

    Article  Google Scholar 

  • Pierce D, Barnett T, Santer B, Gleckler P (2009) Selecting global climate models for regional climate change studies. Proc Natl Acad Sci USA 106:8441–8446

    Article  Google Scholar 

  • Pincus R, Batstone CP, Hofmann RJP, Taylor KE, Glecker PJ (2008) Evaluating the present-day simulation of clouds, precipitation, and radiation in climate models. J Geophys Res Atmos 113:D14209

    Article  Google Scholar 

  • Räisänen J, Ylhäisi JS (2012) Can model weighting improve probabilistic projections of climate change? Clim Dyn 39:1981–1998

    Article  Google Scholar 

  • Rajczak J, Pall P, Schär C (2013) Projections of extreme precipitation events in regional climate simulations for Europe and the Alpine Region. J Geophys Atmos 118:3610–3626. doi:10.1002/jgrd.50297

    Article  Google Scholar 

  • Reichler T, Kim J (2008) How well do coupled models simulate today’s climate? Bull Am Meteorol Soc 89:303–311

    Article  Google Scholar 

  • Rios-Entenza A, Miguez-Macho G (2013) Moisture recycling and the maximum of precipitation in spring in the Iberian Peninsula. Clim Dyn. doi:10.1007/s00382-013-1971-x

    Google Scholar 

  • Rios-Entenza A, Soares PMM, Trigo RM, Cardoso RM, Miguez-Macho G (2014) Precipitation recycling in the Iberian Peninsula: spatial patterns and temporal variability. doi:10.1002/2013JD021274

  • Samuelsson P, Jones C, Willén U, Ullerstig A, Gollvik S, Hansson U, Kjellström E, Nikulin G, Wyser K (2011) The Rossby Centre Regional Climate Model RCA3: model description and performance. Tellus Ser A 63(1):4–23. doi:10.1111/j.1600-0870.2010.00478

    Article  Google Scholar 

  • Sánchez E, Gallardo C, Gaertner M, Arribas A, Castro M (2004) Future climate extreme events in the Mediterranean simulated by a regional climate model: a first approach. Glob Planet Change 44(1–4):163–180. doi:10.1016/j.gloplacha.2004.06.010

    Article  Google Scholar 

  • Semmler T, Jacob D (2004) Modeling extreme precipitation events—a climate change simulation for Europe. Glob Planet Change 44:119–127

    Article  Google Scholar 

  • Soares PMM, Cardoso RM, Miranda PMA, de Medeiros J, Belo-Pereira M, Espirito-Santo F (2012a) WRF high resolution dynamical downscaling of ERA-interim for Portugal. Clim Dyn 39:2497–2522. doi:10.1007/s00382-012-1315-2

    Article  Google Scholar 

  • Soares PMM, Cardoso RM, Miranda PMA, Viterbo P, Belo-Pereira M (2012b) Assessment of the ENSEMBLES regional climate models in the representation of precipitation variability and extremes over Portugal. J Geophys Res 117:D07114. doi:10.1029/2011JD016768

    Google Scholar 

  • Sun Y, Solomon S, Dai A, Portmann RW (2006) How often does it rain? J Clim 19:916–934

    Article  Google Scholar 

  • Tapiador FJ, Sánchez E, Gaertner MA (2007) Regional changes in precipitation in Europe under an increased greenhouse emissions scenario. Geophys Res Lett 34:1–6. doi:10.1029/2006GL029035

    Google Scholar 

  • Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections. Philos Trans R Soc A Math Phys Eng Sci 365(1857):2053–2075

    Article  Google Scholar 

  • Uppala SM et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012

    Article  Google Scholar 

  • van der Linden P, Mitchell J (eds) (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Report, 160 pp, Met Off. Hadley Cent, Exeter, UK

  • van Meijgaard E, van Ulft L, van de Berg W, Bosveld F, van den Hurk B, Lenderink G, Siebesma A (2008) The KNMI regional atmospheric climate model RACMO, version 2.1. Tech. Rep 302 R Neth Meteorol Inst De Bilt, Netherlands

  • von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, Cambridge. ISBN 0 521 45071 3, p 494

  • Weedon GP, Gomes S, Viterbo P, Shuttleworth J, Blyth E, Österle H, Adam JC, Bellouin N, Boucher O, Best M (2011) Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century. J Hydrometeorol 12:823–848. doi:10.1175/2011JHM1369.1

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Portuguese Science Foundation (FCT) under Project SHARE - Seamless High-resolution Atmosphere-Ocean Research RECI/GEO-MET/0380/2012, and PEST-OE/CTE/LA0019/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro M. M. Soares.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soares, P.M.M., Cardoso, R.M., Ferreira, J.J. et al. Climate change and the Portuguese precipitation: ENSEMBLES regional climate models results. Clim Dyn 45, 1771–1787 (2015). https://doi.org/10.1007/s00382-014-2432-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2432-x

Keywords

Navigation