Climate Dynamics

, Volume 44, Issue 7–8, pp 1731–1750 | Cite as

Impact of the soil hydrology scheme on simulated soil moisture memory

  • Stefan HagemannEmail author
  • Tobias Stacke


Soil moisture–atmosphere feedback effects play an important role in several regions of the globe. For some of these regions, soil moisture memory may contribute significantly to the state and temporal variation of the regional climate. Identifying those regions can help to improve predictability in seasonal to decadal climate forecasts. In order to accurately simulate soil moisture memory and associated soil moisture–atmosphere interactions, an adequate representation of soil hydrology is required. The present study investigates how different setups of a soil hydrology scheme affect soil moisture memory simulated by the global climate model of the Max Planck Institute for Meteorology, ECHAM6/JSBACH. First, the standard setup is applied in which soil water is represented by a single soil moisture reservoir corresponding to the root zone. Second, a new five layer soil hydrology scheme is introduced where not only the root zone is differentiated into several layers but also layers below are added. Here, three variants of the new scheme are utilized to analyse how different characteristics of the soil hydrology and the associated fluxes influence soil moisture memory. Soil moisture memory of the different setups is analysed from global ECHAM6/JSBACH simulations forced by observed SST. Areas are highlighted where the regional climate seems to be sensitive to the improved representation of soil hydrology in the new setup and its variants. Results indicate that soil moisture memory is generally enlarged in regions during the dry season where a soil moisture buffer is present below the root zone due to the 5-layer scheme. This effect is usually enhanced when this buffer is increased. Memory tends to be weakened (strengthened) where bare soil evaporation is increased (decreased), especially in semi-arid regions and wet seasons. For some areas, this effect is compensated by a decreased (increased) transpiration.


Soil moisture Large-scale hydrology Climate modelling Soil moisture memory Land surface processes 



The present work was supported by funding for Stefan Hagemann from the European Commission’s 7th Framework Programme, under Grant Agreement number 282672, within the EMBRACE project. Tobias Stacke acknowledges funding from the Federal Ministry of Education and Research in Germany (BMBF) through the research programme MiKlip (FKZ: 01LP1108A). Moreover, we would like to thank Veronika Gayler, Thomas Raddatz, Christian Reick, Reiner Schnur and Stiig Wilkenskjeld from MPI-M for helpful advice during the technical implementation of the 5-layer scheme into the JSBACH model.


  1. Asharaf S, Ahrens B (2013) Soil-moisture memory in the regional climate model COSMO-CLM during the Indian summer monsoon season. J Geophys Res 118:6144–6151. doi: 10.1002/jgrd.50429 Google Scholar
  2. Beringer J, Lynch AH, Chapin FS II, Mack M, Bonan GB (2001) The representation of Arctic soils in the land surface model: the importance of mosses. J Clim 14:3324–3335CrossRefGoogle Scholar
  3. Brovkin V, Raddatz T, Reick CH, Claussen M, Gayler V (2009) Global biogeophysical interactions between forest and climate. Geophys Res Lett 36(L07):405. doi: 10.1029/2009GL037543 Google Scholar
  4. Caldwell MM, Dawson TE, Richards JH (1998) Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia 113:151–161CrossRefGoogle Scholar
  5. Clapp RB, Hornberger GM (1978) Empirical equations for some soil hydraulic properties. Water Resourc Res 14:601–604CrossRefGoogle Scholar
  6. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, Vitart F (2011) The era-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi: 10.1002/qj.828,2011 CrossRefGoogle Scholar
  7. Delworth TL, Manabe S (1988) The influence of potential evaporation on the variabilities of simulated soil wetness and climate. J Clim 1:523–547CrossRefGoogle Scholar
  8. Dirmeyer P, Koster R, Guo ZAD (2006) Do global models properly represent the feedback between land and atmosphere? J Hydrometeor 7:1177–1198CrossRefGoogle Scholar
  9. Disse M (1995) Modellierung der Verdunstung und der Grundwasserneubildung in ebenen Einzugsgebieten. Mitteilungen des Inst. f. Hydrologie u. Wasserwirtschaft d. Universität Karlsruhe 53:95–107Google Scholar
  10. Dümenil Gates L, Hagemann S, Golz C (2000) Observed historical discharge data from major rivers for climate model validation. Max Planck Institute for Meteorology Rep 307 [available from MPI for Meteorology, Bundesstr. 53, 20146 Hamburg, Germany]Google Scholar
  11. Dümenil L, Todini E (1992) A rainfall-runoff scheme for use in the Hamburg climate model. In: Kane JP (ed) Advances in theoretical hydrology—a tribute to James Dooge. Elsevier Science Publishers, Amsterdam, pp 129–157Google Scholar
  12. Dunne KA, Wilmott CJ (1996) Global distribution of plant-extractable water capacity of soil. Int J Climatol 16:841–859CrossRefGoogle Scholar
  13. Ekici A, Beer C, Hagemann S, Hauck C (2013) Improved soil physics for simulating high latitude permafrost regions by the JSBACH terrestrial ecosystem model. Geosci Model Dev Discuss 6:2655–2698. doi: 10.5194/gmdd-6-2655-2013 CrossRefGoogle Scholar
  14. FAO/UNESCO (1971–1981) Soil map of the world, vols 1–10, UNESCO, ParisGoogle Scholar
  15. Hagemann S (2002) An improved land surface parameter dataset for global and regional climate models. Max Planck Institute for Meteorology Rep 336, Max Planck Institute for Meteorology, Hamburg, Germany [Report available electronically from:]
  16. Hagemann S, Dümenil L (1998) A parameterization of the lateral waterflow for the global scale. Clim Dyn 14:17–31CrossRefGoogle Scholar
  17. Hagemann S, Loew A, Andersson A (2013) Combined evaluation of MPI-ESM land surface water and energy fluxes. J Adv Model Earth Syst 5. doi: 10.1029/2012MS000173
  18. Hirschi M, Seneviratne SI, Alexandrov V, Boberg F, Boroneant C, Christensen OB, Formayer H, Orlowsky B, Stepanek P (2011) Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nature Geosci 4:17–21. doi: 10.1038/ngeo1032 CrossRefGoogle Scholar
  19. Jackson RB, Sperry JS, Dawson TE (2000) Root water uptake and transport: using physiological processes in global predictions. Trend Plant Sci 5:482–488CrossRefGoogle Scholar
  20. Jiménez C, Prigent C, Mueller B, Seneviratne SI, McCabe M, Wood E, Rossow W, Balsamo G, Betts A, Dirmeyer P, Fisher J, Jung M, Kanamitsu M, Reichle R, Reichstein M, Rodell M, Sheffield J, Tu K, Wang K (2011) Global inter-comparison of 12 land surface heat flux estimates. J Geophys Res. doi: 10.1029/2010JD014545 Google Scholar
  21. Kato S, Loeb NG, Rose FG, Doelling DR, Rutan DA, Caldwell TE, Yu L, Weller RA (2013) Surface irradiances consistent with ceres-derived top-of-atmosphere shortwave and longwave irradiances. J Clim 26:2719–2740. doi: 10.1175/JCLI-D-12-00436.1 CrossRefGoogle Scholar
  22. Kleidon A (2004) Global datasets and rooting zone depth inferred from inverse methods. J Climate 17:2714–2722CrossRefGoogle Scholar
  23. Koster RD, Suarez MJ (2001) Soil moisture memory in climate models. J Hydrometeor 2:558–570CrossRefGoogle Scholar
  24. Koster RD, Dirmeyer PA, Guo Z, Bonan G, Chan E, Cox P, Gordon CT, Kanae S, Kowalczyk E, Lawrence D, Liu P, Lu CH, Malyshev S, McAvaney B, Mitchell K, Mocko D, Oki T, Oleson K, Pitman A, Sud YC, Taylor CM, Verseghy D, Vasic R, Xue Y, Yamada T (2004a) Regions of strong coupling between soil moisture and precipitation. Science 305(5687):1138–1140CrossRefGoogle Scholar
  25. Koster RD, Suarez MJ, Liu P, Jambor U, Berg A, Kistler M, Reichle R, Rodell M, Famiglietti J (2004b) Realistic initialization of land surface states: impacts on subseasonal forecast skill. J Hydrometeor 5:1049–1063CrossRefGoogle Scholar
  26. Koster RD, Mahanama S, Yamada TJ, Balsamo G, Boisserie M, Dirmeyer P, Doblas-Reyes F, Gordon CT, Guo Z, Jeong J-H, Lawrence DM, Lee W-S, Li Z, Luo L, Malyshev S, Merryfield W, Seneviratne SI, Stanelle T, van den Hurk B, Vitart F, Wood EF (2010) The contribution of land initialization to subseasonal forecast skill: first results from the GLACE-2 Project. Geophys Res Lett 37:L02402. doi: 10.1029/2009GL041677 CrossRefGoogle Scholar
  27. Letts MG, Roulet NT, Corner NT, Skapura MR, Verseghy DL (2000) Parametrization of peatland hydraulic properties for the Canadian land surface scheme. Atmos Ocean 38(1):141–160CrossRefGoogle Scholar
  28. Liu YY, Parinussa RM, Dorigo W, De Jeu R, Wagner W, van Dijk IJM, McCabe MF, Evans JP (2011) Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals. Hydrol Earth Syst Sci 15:425–436. doi: 10.5194/hess-15-425-2011 CrossRefGoogle Scholar
  29. Loew A, Stacke T, Dorigo W, de Jeu R, Hagemann S (2013) Potential and limitations of multidecadal satellite soil moisture observations for climate model evaluation studies. Hydrol Earth Syst Sci 17:3523–3542. doi: 10.5194/hess-17-3523-2013 CrossRefGoogle Scholar
  30. Lorenz R, Jaeger EB, Seneviratne SI (2010) Persistence of heat waves and its link to soil moisture memory. Geophys Res Lett 37:L09703. doi: 10.1029/2010GL042764 CrossRefGoogle Scholar
  31. Mitchell KE, Lohmann D, Houser PR, Wood EF, Schaake JC, Robock A, Cosgrove BA, Sheffield J, Duan Q, Luo L, Higgins RW, Pinker RT, Tarpley JD, Lettenmaier DP, Marshall CH, Entin JK, Pan M, Shi W, Koren V, Meng J, Ramsay BH, Bailey AA (2004) The multi-institution North American land data assimilation system (NLDAS): utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J Geophys Res 109:D07S90. doi: 10.1029/2003JD003823
  32. Mueller B, Seneviratne SI, Jimenez C, Corti T, Hirschi M, Balsamo G, Ciais P, Dirmeyer P, Fisher JB, Guo Z, Jung M, Maignan F, McCabe MF, Reichle R, Reichstein M, Rodell M, Sheffield J, Teuling AJ, Wang K, Wood EF, Zhang Y (2011) Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations. Geophys Res Lett 38. doi: 10.1029/2010GL046230
  33. O’Geen AT (2012) Soil water dynamics. Nature Educ Knowl 3(6):12Google Scholar
  34. Patterson KA (1990) Global distributions of total and total-avaiable soil water-holding capacities. University of Delaware, DelawareGoogle Scholar
  35. Raddatz TJ, Reick C, Knorr W, Kattge J, Roeckner E, Schnur R, Schnitzler K-G, Wetzel P, Jungclaus JH (2007) Will the tropical land biosphere dominate the climate-carbon cycle feedback during the twenty-first century? Clim Dyn. doi: 10.1007/s00382-007-0247-8 Google Scholar
  36. Richards LA (1931) Capillary conduction of liquids through porous mediums. Physics 1(5):318–333. doi: 10.1063/1.1745010 CrossRefGoogle Scholar
  37. Richtmyer RD, Morton KW (1967) Difference methods for initial-value problems. Wiley-Interscience, New YorkGoogle Scholar
  38. Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng C-J, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll D (2004) The global land data assimilation system. Bull Am Meteorol Soc 85(3):381394CrossRefGoogle Scholar
  39. Roeckner E, Arpe K, Bengtsson L, Christoph M, Claussen M, Dümenil L, Esch M, Giorgetta M, Schlese U, Schulzweida U (1996) The atmospheric general circulation model ECHAM-4: model description and simulation of the present day climate. Max Planck Institute for Meteorology Rep 218. Available from MPI for Meteorology, Bundesstr. 53, 20146 Hamburg, GermanyGoogle Scholar
  40. Roesch A, Wild M, Gilgen H, Ohmura A (2001) A new snow cover fraction parameterization for the ECHAM4 GCM. Clim Dyn 17:933–946CrossRefGoogle Scholar
  41. Rowntree PR (1991) Atmospheric parameterization schemes for evaporation over land: basic concepts and climate modelling aspects, In: Schmugge TJ, Andre J (eds) Land surface evaporation—measurement and parameterization. Springer, Berlin, pp 5–29Google Scholar
  42. Schlosser CA, Milly PCD (2002) A model-based investigation of soil moisture predictability and associated climate predictability. J Hydrometeor 3:483–501CrossRefGoogle Scholar
  43. Sellers PY, Mintz Y, Sud YC, Dalcher A (1986) A simple biosphere model (Sib) for use within general circulation models. J Atm Sci 43:505–531CrossRefGoogle Scholar
  44. Seneviratne SI, Stöckli R (2008) The role of land-atmosphere interactions for climate variability in Europe. In: Brönnimann et al (eds) Climate variability and extremes during the past 100 years. Adv Global Change Res 33. Springer, Berlin (Book chapter)Google Scholar
  45. Seneviratne SI, Koster RD, Guo Z, Dirmeyer PA, Kowalczyk E, Lawrence D, Liu P, Lu C-H, Mocko D, Oleson KW, Verseghy D (2006a) Soil moisture memory in AGCM simulations: analysis of global land–atmosphere coupling experiment (GLACE) data. J Hydrometeor 7:1090–1112CrossRefGoogle Scholar
  46. Seneviratne SI, Lüthi D, Litschi M, Schär C (2006b) Land–atmosphere coupling and climate change in Europe. Nature 443:205–209CrossRefGoogle Scholar
  47. Seneviratne SI, Corti T, Davin E, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling AJ (2010) Investigating soil moisture–climate interactions in a changing climate: a review. Earth-Sci Rev 99:125–161. doi: 10.1016/j.earscirev.2010.02.004 CrossRefGoogle Scholar
  48. Stevens B, Giorgetta M, Esch M, Mauritsen T, Crueger T, Rast S, Salzmann M, Schmidt H, Bader J, Block K, Brokopf R, Fast I, Kinne S, Kornblueh L, Lohmann U, Pincus R, Reichler T, Roeckner E (2013) The atmospheric component of the MPI-M earth system model: ECHAM6. J Adv Model Earth Syst 5:146–172. doi: 10.1002/jame.20015 CrossRefGoogle Scholar
  49. Taylor CM, Ellis RJ (2006) Satellite detection of soil moisture impacts on convection at the mesoscale. Geophys Res Lett 33:L03404. doi: 10.1029/2005GL025252 CrossRefGoogle Scholar
  50. Taylor KE, Williamson D, Zwiers F (2000) The sea surface temperature and sea-ice concentration boundary conditions for AMIP II simulations. PCMDI Report, 60, program for climate model diagnosis and intercomparison. Lawrence Livermore National Laboratory, Livermore, California, 25 ppGoogle Scholar
  51. Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898CrossRefGoogle Scholar
  52. Warrilow DA, Sangster AB, Slingo A (1986) Modelling of land surface processes and their influence on European climate. UK Met Office Tech Note DCTN 38, 92 ppGoogle Scholar
  53. Weedon GP, Gomes S, Viterbo P, Shuttleworth WJ, Blyth E, Österle H, Adam JC, Bellouin N, Boucher O, Best M (2011) Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century. J Hydrometeor 12:823–848. doi: 10.1175/2011JHM1369.1 CrossRefGoogle Scholar
  54. Williams RD, Ahuja LR (2003) Scaling and estimating the soil water characteristic using a one-parameter model. In: Pachepsky Y, Radcliffe DE, Selim HM (eds) Scaling methods in soil physics. CRC Press, Boca Raton, pp 35–48Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Max Planck Institute for MeteorologyHamburgGermany

Personalised recommendations