Advertisement

Climate Dynamics

, Volume 44, Issue 11–12, pp 3449–3468 | Cite as

AMOC response to global warming: dependence on the background climate and response timescale

  • Jiang ZhuEmail author
  • Zhengyu LiuEmail author
  • Jiaxu Zhang
  • Wei Liu
Article

Abstract

This paper investigates the response of the Atlantic meridional overturning circulation (AMOC) to a sudden doubling of atmospheric CO2 in the National Center for Atmospheric Research Community Climate System Model version 3, with a focus on differences under different background climates. The findings reveal that the evolution of the AMOC differs significantly between the modern climate and the last glacial maximum (LGM). In the modern climate, the AMOC decreases (by 25 %, 4 Sv) in the first 100 years and then recovers slowly (by 6 %, 1 Sv) by the end of the 1,500-year simulation. At the LGM, the AMOC also weakens (by 8 %, 1 Sv) in the initial 90 years, but then recovers, first rapidly (by 30 %, 4 Sv) over the following 300 years, and then slowly (by 13 %, 1.6 Sv) during the remainder of the integration. These results suggest that the responses of the AMOC under both climates have a similar initial rapid weakening period of ~100 years and a final slow strengthening period over 1,000 years long. However, additional intermediate period of ~300 years does occur for the LGM, with rapid intensification in the AMOC. Analyses suggest that the rapid intensification is triggered and sustained primarily by a coupled sea ice–ocean feedback: the reduction of meltwater flux in the northern North Atlantic—associated with the remarkable sea-ice retreat at the LGM—intensifies the AMOC and northward heat transport, which, in turn, causes further sea-ice retreat and more reduction of meltwater. These processes are insignificant under modern conditions.

Keywords

Atlantic meridional overturning circulation Carbon dioxide Last glacial maximum Sea ice Timescale 

Notes

Acknowledgments

The authors thank Dr. Feng He for performing the transient experiments (TraCE-GHG) and Dr. Esther Brady for helpful comments that improved the quality of this paper. We gratefully acknowledge the constructive comments from  two anonymous reviewers. This work is supported by the National Natural Science Foundation of China (NSFC 41130105), the Ministry of Science and Technology of China (MOST 2012CB955200), the U.S. National Science Foundation and the Department of Energy.

References

  1. Banderas R, Ávarez-Solas J, Montoya M (2012) Role of CO2 and Southern Ocean winds in glacial abrupt climate change. Clim Past 8(3):1011–1021. doi: 10.5194/cp-8-1011-2012 CrossRefGoogle Scholar
  2. Bitz CM, Chiang JCH, Cheng W, Barsugli JJ (2007) Rates of thermohaline recovery from freshwater pulses in modern, last glacial maximum, and greenhouse warming climates. Geophys Res Lett 34(7):L07708. doi: 10.1029/2006GL029237 Google Scholar
  3. Brady E, Otto-Bliesner B (2011) The role of meltwater-induced subsurface ocean warming in regulating the Atlantic meridional overturning in glacial climate simulations. Clim Dyn 37(7–8):1517–1532. doi: 10.1007/s00382-010-0925-9 CrossRefGoogle Scholar
  4. Bryan FO, Danabasoglu G, Nakashiki N, Yoshida Y, Kim D-H, Tsutsui J, Doney SC (2006) Response of the North Atlantic thermohaline circulation and ventilation to increasing carbon dioxide in CCSM3. J Clim 19(11):2382–2397. doi: 10.1175/jcli3757.1 CrossRefGoogle Scholar
  5. Bryan FO, Nakashiki N, Yoshida Y, Maruyama K (2007) Response of the meridional overturning circulation during differing pathways toward greenhouse gas stabilization. In: Ocean circulation: mechanisms and impacts—past and future changes of meridional overturning. American Geophysical Union, pp 351–363. doi: 10.1029/173gm22
  6. Collins WD, Bitz CM, Blackmon ML, Bonan GB, Bretherton CS, Carton JA, Chang P, Doney SC, Hack JJ, Henderson TB, Kiehl JT, Large WG, McKenna DS, Santer BD, Smith RD (2006) The community climate system model version 3 (CCSM3). J Clim 19(11):2122–2143. doi: 10.1175/JCLI3761.1 CrossRefGoogle Scholar
  7. Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1029–1136Google Scholar
  8. Danabasoglu G, Gent PR (2009) Equilibrium climate sensitivity: is it accurate to use a slab ocean model? J Clim 22(9):2494–2499. doi: 10.1175/2008jcli2596.1 CrossRefGoogle Scholar
  9. Duplessy JC, Shackleton NJ, Fairbanks RG, Labeyrie L, Oppo D, Kallel N (1988) Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation. Paleoceanography 3(3):343–360. doi: 10.1029/PA003i003p00343 CrossRefGoogle Scholar
  10. Eisenman I, Bitz CM, Tziperman E (2009) Rain driven by receding ice sheets as a cause of past climate change. Paleoceanography 24(4):PA4209. doi: 10.1029/2009pa001778 CrossRefGoogle Scholar
  11. Flato G, Marotzke J, Abiodun B, Braconnot P, Chou SC, Collins W, Cox P, Driouech F, Emori S, Eyring V, Forest C, Gleckler P, Guilyardi E, Jakob C, Kattsov V, Reason C, Rummukainen M (2013) Evaluation of climate models. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 741–866Google Scholar
  12. Ganachaud A, Wunsch C (2000) Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408(6811):453–457. doi: 10.1038/35044048 CrossRefGoogle Scholar
  13. Gersonde R, Crosta X, Abelmann A, Armand L (2005) Sea-surface temperature and sea ice distribution of the Southern Ocean at the EPILOG last glacial maximum—a circum-Antarctic view based on siliceous microfossil records. Quat Sci Rev 24(7–9):869–896. doi: 10.1016/j.quascirev.2004.07.015 CrossRefGoogle Scholar
  14. Gildor H, Tziperman E (2003) Sea-ice switches and abrupt climate change. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 361(1810):1935–1944. doi: 10.1098/rsta.2003.1244 CrossRefGoogle Scholar
  15. Gregory JM, Dixon KW, Stouffer RJ, Weaver AJ, Driesschaert E, Eby M, Fichefet T, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Sokolov AP, Thorpe RB (2005) A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys Res Lett 32(12):L12703. doi: 10.1029/2005gl023209 CrossRefGoogle Scholar
  16. He F (2011) Simulating transient climate evolution of the last deglaciation with CCSM3. Dissertation, University of Wisconsin-Madison, Madison, USAGoogle Scholar
  17. He F, Shakun JD, Clark PU, Carlson AE, Liu Z, Otto-Bliesner BL, Kutzbach JE (2013) Northern Hemisphere forcing of Southern Hemisphere climate during the last deglaciation. Nature 494(7435):81–85. doi: 10.1038/nature11822 CrossRefGoogle Scholar
  18. Hieronymus M, Nycander J (2012) The buoyancy budget with a nonlinear equation of state. J Phys Oceanogr 43(1):176–186. doi: 10.1175/JPO-D-12-063.1 CrossRefGoogle Scholar
  19. Hu A, Otto-Bliesner BL, Meehl GA, Han W, Morrill C, Brady EC, Briegleb B (2008) Response of thermohaline circulation to freshwater forcing under present-day and LGM Conditions. J Clim 21(10):2239–2258. doi: 10.1175/2007jcli1985.1 CrossRefGoogle Scholar
  20. Hu A, Meehl GA, Han W, Yin J (2009) Transient response of the MOC and climate to potential melting of the Greenland ice sheet in the 21st century. Geophys Res Lett 36(10):L10707. doi: 10.1029/2009gl037998 CrossRefGoogle Scholar
  21. Jayne SR, Marotzke J (1999) A destabilizing thermohaline circulation-atmosphere-sea ice feedback. J Clim 12(2):642–651. doi: 10.1175/1520-0442(1999)012<0642:adtcas>2.0.co;2 CrossRefGoogle Scholar
  22. Klocker A, McDougall TJ (2010) Influence of the nonlinear equation of state on global estimates of dianeutral advection and diffusion. J Phys Oceanogr 40(8):1690–1709. doi: 10.1175/2010JPO4303.1 CrossRefGoogle Scholar
  23. Knorr G, Lohmann G (2007) Rapid transitions in the Atlantic thermohaline circulation triggered by global warming and meltwater during the last deglaciation. Geochem Geophys Geosyst 8(12):Q12006. doi: 10.1029/2007gc001604 CrossRefGoogle Scholar
  24. Kutzbach JE, He F, Vavrus SJ, Ruddiman WF (2013) The dependence of equilibrium climate sensitivity on climate state: applications to studies of climates colder than present. Geophys Res Lett 40(14):3721–3726. doi: 10.1002/grl.50724 CrossRefGoogle Scholar
  25. Liu Z (2006) Glacial thermohaline circulation and climate: forcing from the north or south? Adv Atmos Sci 23(2):199–206. doi: 10.1007/s00376-006-0199-7 CrossRefGoogle Scholar
  26. Liu Z, Shin S-I, Webb RS, Lewis W, Otto-Bliesner BL (2005) Atmospheric CO2 forcing on glacial thermohaline circulation and climate. Geophys Res Lett 32(2):L02706. doi: 10.1029/2004gl021929 Google Scholar
  27. Liu Z, Otto-Bliesner BL, He F, Brady EC, Tomas R, Clark PU, Carlson AE, Lynch-Stieglitz J, Curry W, Brook E, Erickson D, Jacob R, Kutzbach J, Cheng J (2009) Transient simulation of last deglaciation with a new mechanism for Bølling-Allerød warming. Science 325(5938):310–314. doi: 10.1126/science.1171041 CrossRefGoogle Scholar
  28. Liu W, Liu Z, Hu A (2013) The stability of an evolving Atlantic meridional overturning circulation. Geophys Res Lett 40(8):1562–1568. doi: 10.1002/grl.50365 CrossRefGoogle Scholar
  29. Lohmann G, Gerdes RD (1998) Sea ice effects on the sensitivity of the thermohaline circulation. J Clim 11(11):2789–2803. doi: 10.1175/1520-0442(1998)011<2789:sieots>2.0.co;2 CrossRefGoogle Scholar
  30. Lynch-Stieglitz J, Adkins JF, Curry WB, Dokken T, Hall IR, Herguera JC, Hirschi JJ, Ivanova EV, Kissel C, Marchal O, Marchitto TM, McCave IN, McManus JF, Mulitza S, Ninnemann U, Peeters F, Yu E-F, Zahn R (2007) Atlantic meridional overturning circulation during the last glacial maximum. Science 316(5821):66–69. doi: 10.1126/science.1137127 CrossRefGoogle Scholar
  31. McManus JF, Francois R, Gherardi JM, Keigwin LD, Brown-Leger S (2004) Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428(6985):834–837. doi: 10.1038/nature02494 CrossRefGoogle Scholar
  32. Meehl GA, Washington WM, Arblaster JM, Hu A, Teng H, Tebaldi C, Sanderson BN, Lamarque J-F, Conley A, Strand WG, White JB (2012) Climate system response to external forcings and climate change projections in CCSM4. J Clim 25(11):3661–3683. doi: 10.1175/JCLI-D-11-00240.1 CrossRefGoogle Scholar
  33. Meehl GA, Washington WM, Arblaster JM, Hu A, Teng H, Kay JE, Gettelman A, Lawrence DM, Sanderson BM, Strand WG (2013) Climate change projections in CESM1(CAM5) compared to CCSM4. J Clim 26(17):6287–6308. doi: 10.1175/JCLI-D-12-00572.1 CrossRefGoogle Scholar
  34. Oka A, Hasumi H, Abe-Ouchi A (2012) The thermal threshold of the Atlantic meridional overturning circulation and its control by wind stress forcing during glacial climate. Geophys Res Lett 39(9):L09709. doi: 10.1029/2012gl051421 Google Scholar
  35. Otto-Bliesner BL, Hewitt CD, Marchitto TM, Brady E, Abe-Ouchi A, Crucifix M, Murakami S, Weber SL (2007) Last glacial maximum ocean thermohaline circulation: PMIP2 model intercomparisons and data constraints. Geophys Res Lett 34(12):L12706. doi: 10.1029/2007GL029475 CrossRefGoogle Scholar
  36. Peltier WR (2004) Global glacial isostasy and the surface of the ice-age earth: the ICE-5G (VM2) model and grace. Annu Rev Earth Planet Sci 32(1):111–149. doi: 10.1146/annurev.earth.32.082503.144359 CrossRefGoogle Scholar
  37. Rahmstorf S, Ganopolski A (1999) Long-term global warming scenarios computed with an efficient coupled climate model. Clim Change 43(2):353–367. doi: 10.1023/a:1005474526406 CrossRefGoogle Scholar
  38. Robinson LF, Adkins JF, Keigwin LD, Southon J, Fernandez DP, Wang S-L, Scheirer DS (2005) Radiocarbon variability in the Western North Atlantic during the last deglaciation. Science 310(5753):1469–1473. doi: 10.1126/science.1114832 CrossRefGoogle Scholar
  39. Saenko OA, Eby M, Weaver AJ (2004) The effect of sea-ice extent in the North Atlantic on the stability of the thermohaline circulation in global warming experiments. Clim Dyn 22(6–7):689–699. doi: 10.1007/s00382-004-0414-0 Google Scholar
  40. Sarnthein M, Pflaumann U, Weinelt M (2003) Past extent of sea ice in the northern North Atlantic inferred from foraminiferal paleotemperature estimates. Paleoceanography 18(2):1047. doi: 10.1029/2002PA000771 Google Scholar
  41. Schmitt RW, Bogden PS, Dorman CE (1989) Evaporation minus precipitation and density fluxes for the North Atlantic. J Phys Oceanogr 19(9):1208–1221. doi: 10.1175/1520-0485(1989)019<1208:empadf>2.0.co;2 CrossRefGoogle Scholar
  42. Schmittner A, Latif M, Schneider B (2005) Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations. Geophys Res Lett 32(23):L23710. doi: 10.1029/2005gl024368 CrossRefGoogle Scholar
  43. Shin S-I, Liu Z, Otto-Bliesner BL, Kutzbach JE, Vavrus SJ (2003a) Southern Ocean sea-ice control of the glacial North Atlantic thermohaline circulation. Geophys Res Lett 30(2):1096. doi: 10.1029/2002gl015513 CrossRefGoogle Scholar
  44. Shin SI, Liu Z, Otto-Bliesner B, Brady E, Kutzbach J, Harrison S (2003b) A simulation of the last glacial maximum climate using the NCAR-CCSM. Clim Dyn 20(2–3):127–151. doi: 10.1007/s00382-002-0260-x Google Scholar
  45. Speer K, Tziperman E (1992) Rates of water mass formation in the North Atlantic Ocean. J Phys Oceanogr 22(1):93–104. doi: 10.1175/1520-0485(1992)022<0093:ROWMFI>2.0.CO;2 CrossRefGoogle Scholar
  46. Stocker TF, Knutti R, Plattner GK (2001) The future of the thermohaline circulation—a perspective. In: The oceans and rapid climate change: past, present, and future, vol 126. Geophys. Monogr. Ser. AGU, Washington, DC, pp 277–293. doi: 10.1029/GM126p0277
  47. Stouffer RJ (2004) Time scales of climate response. J Clim 17(1):209–217. doi: 10.1175/1520-0442(2004)017<0209:tsocr>2.0.co;2 CrossRefGoogle Scholar
  48. Stouffer RJ, Manabe S (2003) Equilibrium response of thermohaline circulation to large changes in atmospheric CO2 concentration. Clim Dyn 20(7–8):759–773. doi: 10.1007/s00382-002-0302-4 CrossRefGoogle Scholar
  49. Stouffer RJ, Yin J, Gregory JM, Dixon KW, Spelman MJ, Hurlin W, Weaver AJ, Eby M, Flato GM, Hasumi H, Hu A, Jungclaus JH, Kamenkovich IV, Levermann A, Montoya M, Murakami S, Nawrath S, Oka A, Peltier WR, Robitaille DY, Sokolov A, Vettoretti G, Weber SL (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim 19(8):1365–1387. doi: 10.1175/jcli3689.1 CrossRefGoogle Scholar
  50. Swart NC, Fyfe JC (2012) Observed and simulated changes in the Southern Hemisphere surface westerly wind-stress. Geophys Res Lett 39(16):L16711. doi: 10.1029/2012GL052810 Google Scholar
  51. Swingedouw D, Braconnot P, Marti O (2006) Sensitivity of the Atlantic meridional overturning circulation to the melting from northern glaciers in climate change experiments. Geophys Res Lett 33(7):L07711. doi: 10.1029/2006gl025765 Google Scholar
  52. Swingedouw D, Braconnot P, Delecluse P, Guilyardi E, Marti O (2007) Quantifying the AMOC feedbacks during a 2×CO2 stabilization experiment with land-ice melting. Clim Dyn 29(5):521–534. doi: 10.1007/s00382-007-0250-0 CrossRefGoogle Scholar
  53. Talley LD, Reid JL, Robbins PE (2003) Data-based meridional overturning stream functions for the global ocean. J Clim 16(19):3213–3226. doi: 10.1175/1520-0442(2003)016<3213:dmosft>2.0.co;2 CrossRefGoogle Scholar
  54. Toggweiler JR, Russell J (2008) Ocean circulation in a warming climate. Nature 451(7176):286–288. doi: 10.1038/nature06590 CrossRefGoogle Scholar
  55. Voss R, Mikolajewicz U (2001) Long-term climate changes due to increased CO2 concentration in the coupled atmosphere-ocean general circulation model ECHAM3/LSG. Clim Dyn 17(1):45–60. doi: 10.1007/pl00007925 CrossRefGoogle Scholar
  56. Weaver AJ, Eby M, Kienast M, Saenko OA (2007) Response of the Atlantic meridional overturning circulation to increasing atmospheric CO2: sensitivity to mean climate state. Geophys Res Lett 34(5):L05708. doi: 10.1029/2006gl028756 Google Scholar
  57. Weaver AJ, Sedláček J, Eby M, Alexander K, Crespin E, Fichefet T, Philippon-Berthier G, Joos F, Kawamiya M, Matsumoto K, Steinacher M, Tachiiri K, Tokos K, Yoshimori M, Zickfeld K (2012) Stability of the Atlantic meridional overturning circulation: a model intercomparison. Geophys Res Lett 39(20):L20709. doi: 10.1029/2012gl053763 Google Scholar
  58. Wood RA, Vellinga M, Thorpe R (2003) Global warming and thermohaline circulation stability. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 361(1810):1961–1975. doi: 10.1098/rsta.2003.1245 CrossRefGoogle Scholar
  59. Yang J, Neelin JD (1993) Sea–ice interaction with the thermohaline circulation. Geophys Res Lett 20(3):217–220. doi: 10.1029/92GL02920 CrossRefGoogle Scholar
  60. Yang H, Zhu J (2011) Equilibrium thermal response timescale of global oceans. Geophys Res Lett 38(14):L14711. doi: 10.1029/2011gl048076 Google Scholar
  61. Yeager SG, Shields CA, Large WG, Hack JJ (2006) The low-resolution CCSM3. J Clim 19(11):2545–2566. doi: 10.1175/jcli3744.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Atmospheric and Oceanic Sciences and Center for Climatic ResearchUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Laboratory for Climate and Ocean-Atmosphere Studies, School of PhysicsPeking UniversityBeijingPeople’s Republic of China
  3. 3.Scripps Institution of OceanographyUniversity of California, San DiegoLa JollaUSA

Personalised recommendations