Skip to main content
Log in

An interdecadal change in the influence of the spring Arctic Oscillation on the subsequent ENSO around the early 1970s

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Previous studies suggested that the springtime Arctic Oscillation (AO) influences the El Niño-Southern Oscillation (ENSO) outbreak in the following winter. Using the HadISST, HadSLP2r, ERSSTv3b and NCEP-NCAR reanalysis data for the period 1948–2012, this analysis further reveals that the AO–ENSO relationship experienced a pronounced interdecadal shift. The spring AO influence on the subsequent ENSO is weak before 1970; while the influence becomes strong and statistically significant in the 1970s and 1980s. We then compare the spring AO associated circulation, SST and precipitation anomalies between the PRE (1949–1968) and POST (1970–1989) epochs to explore this interdecadal change of the AO–ENSO relationship. The spring AO-related anomalies of atmospheric circulation over the North Pacific mid-latitudes, cyclonic circulation over the subtropical western-central Pacific, and westerly winds in the tropical western-central Pacific are found to be stronger in the POST epoch than in the PRE epoch. The intensity of spring Pacific synoptic-scale eddy activity is seen to experience a significant interdecadal change around the early-1970s from a weak regime to a strong regime. Thus the strength of synoptic-scale eddy feedback to the low frequency flow becomes stronger after 1970. In the POST epoch, the strong synoptic-scale eddy feedback provides a favorable condition for the formulation of the spring AO-related cyclonic circulation and westerly wind anomalies over the western North Pacific. The tropical SST, precipitation and atmospheric circulation anomalies sustain and develop from spring to winter through the positive Bjerknes feedback, leading to an El Niño-like warming in the tropical central-eastern Pacific in the following winter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Allan R, Ansell T (2006) A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J Clim 19:5816–5842

    Article  Google Scholar 

  • An SI, Wang B (2000) Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J Clim 13:2044–2055

    Article  Google Scholar 

  • Annamalai H, Xie S, McCreary J, Murtugudde R (2005) Impact of Indian Ocean sea surface temperature on developing El Niño. J Clim 18:302–319

    Article  Google Scholar 

  • Barnett T, Dümenil L, Schlese U, Roeckner E, Latif M (1989) The effect of Eurasian snow cover on regional and global climate variations. J Atmos Sci 46:661–686

    Article  Google Scholar 

  • Bjerknes J (1969) Atmospheric teleconnections from the equatorial pacific 1. Mon Wea Rev 97:163–172

    Article  Google Scholar 

  • Boschat G, Terray P, Masson S (2013) Extratropical forcing of ENSO. Geophys Res Lett 40:1605–1611. doi:10.1002/grl.50229

    Article  Google Scholar 

  • Cai M, Yang S, Van Den Dool H, Kousky V (2007) Dynamical implications of the orientation of atmospheric eddies: a local energetics perspective. Tellus A 59:127–140

    Article  Google Scholar 

  • Chang EKM, Fu YF (2002) Interdecadal variations in Northern Hemisphere winter storm track intensity. J Clim 15:642–658

    Article  Google Scholar 

  • Chang CP, Zhang YS, Li T (2000) Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: roles of the subtropical ridge. J Clim 13:4310–4325

    Article  Google Scholar 

  • Chen W, Li T (2007) Modulation of northern hemisphere wintertime stationary planetary wave activity: East Asian climate relationships by the Quasi-Biennial Oscillation. J Geophys Res 112:D20120. doi:10.1029/2007JD008611

    Article  Google Scholar 

  • Chen W, Zhou Q (2012) Modulation of the Arctic Oscillation and the East Asian winter climate relationships by the 11-year solar cycle. Adv Atmos Sci 29:217–226

    Article  Google Scholar 

  • Chen W, Yang S, Huang RH (2005) Relationship between stationary planetary wave activity and the East Asian winter monsoon. J Geophys Res 110:D14110. doi:10.1029/2004JD005669

    Article  Google Scholar 

  • Chen W, Lan XQ, Wang L, Ma Y (2013a) The combined effects of the ENSO and the Arctic Oscillation on the winter climate anomalies in East Asia. Chin Sci Bull 58:1355–1362. doi:10.1007/s11434-012-5654-5

    Article  Google Scholar 

  • Chen S, Chen W, Wei K (2013b) Recent trends in winter temperature extremes in eastern China and their relationship with the Arctic Oscillation and ENSO. Adv Atmos Sci 30:1712–1724. doi:10.1007/s00376-013-2296-8

    Article  Google Scholar 

  • Chen S, Chen W, Yu B, Graf HF (2013c) Modulation of the seasonal footprinting mechanism by the boreal spring Arctic Oscillation. Geophys Res Lett 40:6384–6389. doi:10.1002/2013GL058628

    Article  Google Scholar 

  • Chen S, Yu B, Chen W (2014) An analysis on the physical process of the influence of AO on ENSO. Clim Dyn 42:973–989. doi:10.1007/s00382-012-1654-z

    Article  Google Scholar 

  • Cheung HN, Zhou W, Mok HY, Wu MC (2012) Relationship between Ural-Siberian blocking and East Asian winter monsoon in relation to Arctic oscillation and El Niño/Southern Oscillation. J Clim. doi:10.1175/JCLI-D-11-00225.1

    Google Scholar 

  • Chiang JCH, Vimont DJ (2004) Analogous Pacific and Atlantic meridional modes of tropical atmosphere-ocean variability. J Clim 17:4143–4158

    Article  Google Scholar 

  • Choi KS, Wu CC, Byun HR (2012) Possible connection between summer tropical cyclone frequency and spring Arctic Oscillation over East Asia. Clim Dyn 38:2613–2629. doi:10.1007/s00382-011-1088-z

    Article  Google Scholar 

  • Choi KS, Kang SD, Kim HD (2013) Possible relationship between North Korean total rainfall and Arctic Oscillation in May. Theor Appl Climatol 112:483–494. doi:10.1007/s00704-012-0738-3

    Article  Google Scholar 

  • Ding H, Keenlyside NS, Latif M (2012) Impact of the equatorial Atlantic on the El Nino southern oscillation. Clim Dyn 38:1965–1972

    Article  Google Scholar 

  • Dommenget D, Semenov V, Latif M (2006) Impacts of the tropical Indian and Atlantic Oceans on ENSO. Geophys Res Lett 33:L11701. doi:10.1029/2006GL025871

    Article  Google Scholar 

  • Frauen C, Dommenget D (2012) Influences of the tropical Indian and Atlantic Oceans on the predictability of ENSO. Geophys Res Lett 39:L02706. doi:10.1029/2011GL050520

    Google Scholar 

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Quart J Roy Meteorol Soc 106:447–462

    Article  Google Scholar 

  • Gong DY, Ho C-H (2002) Shift in the summer rainfall over the Yangtze River valley in the late 1970s. Geophys Res Lett 29:1436. doi:10.1029/2001GL014523

    Google Scholar 

  • Gong DY, Ho C-H (2003) Arctic oscillation signals in the East Asian summer monsoon. J Geophys Res 108(D2):4066. doi:10.1029/2002JD002193

    Article  Google Scholar 

  • Gong DY, Wang SW, Zhu JH (2001) East Asian winter monsoon and Arctic oscillation. Geophys Res Lett 28:2073–2076. doi:10.1029/2000GL012311

    Article  Google Scholar 

  • Gong DY, Yang J, Kim SJ, Gao YQ, Guo D, Zhou TJ, Hu M (2011) Spring Arctic Oscillation-East Asian summer monsoon connection through circulation changes over the western North Pacific. Clim Dyn 37:2199–2216. doi:10.1007/s00382-011-1041-1

    Article  Google Scholar 

  • Greatbatch RJ, Rong P-P (2006) Discrepancies between different Northern Hemisphere summer atmospheric data products. J Clim 19:1261–1273

    Article  Google Scholar 

  • Ham YG, Kug JS, Park JY, Jin FF (2013) Sea surface temperature in the north tropical Atlantic as a trigger for El Nino/Southern Oscillation events. Nat Geosci 6:112–116

    Article  Google Scholar 

  • Hartmann DL, Lo F (1998) Wave-driven zonal flow vacillation in the Southern Hemisphere. J Atmos Sci 55:1303–1315

    Article  Google Scholar 

  • Hendon HH, Hartmann DL (1985) Variability in a nonlinear model of the atmosphere with zonally symmetric forcing. J Atmos Sci 42:2783–2797

    Article  Google Scholar 

  • Horel JD, Wallace JM (1981) Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon Wea Rev 109:813–829

    Article  Google Scholar 

  • Hoskins BJ, James IN, White GH (1983) The shape, propagation and mean-flow interaction of large-scale weather systems. J Atmos Sci 40:1595–1612

    Article  Google Scholar 

  • Hu M, Gong DY, Mao R (2013) Possible influence of February–April arctic oscillation on the itcz activity of western-central pacific. J Tropical Meteorol (in Chinese) 29:55–65

    Google Scholar 

  • Huang R, Zhang R, Yan B (2001) Dynamical effect of the zonal wind anomalies over the tropical western Pacific on ENSO cycles. Sci China Ser D Earth Sci 44:1089–1098

    Article  Google Scholar 

  • Huang JY, Tan BK, Suo LL, Hu YY (2007) Monthly changes in the influence of the Arctic oscillation on surface air temperature over China. Adv Atmos Sci 24:799–807

    Article  Google Scholar 

  • Inoue T, Matsumoto J (2004) A comparison of summer sea level pressure over East Eurasia between NCEP-NCAR reanalysis and ERA-40 for the period 1960–1999. J Meteorol Soc Jpn 82:951–958

    Article  Google Scholar 

  • Jeong JH, Ho CH (2005) Changes in occurrence of cold surges over east Asia in association with Arctic Oscillation. Geophys Res Lett 32. doi:10.1029/2005GL023024

  • Jin F (2010) Eddy-induced instability for low-frequency variability. J Atmos Sci 67:1947–1964

    Article  Google Scholar 

  • Jin F, Pan L, Watanabe M (2006a) Dynamics of synoptic eddy and low-frequency flow interaction. Part I: a linear closure. J Atmos Sci 63:1677–1694

    Article  Google Scholar 

  • Jin F, Pan L, Watanabe M (2006b) Dynamics of synoptic eddy and low-frequency flow interaction. Part II: a theory for low-frequency modes. J Atmos Sci 63:1695–1708

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Sana S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:431–437

    Google Scholar 

  • Kim HJ, Ahn JB (2012) Possible impact of the autumnal North Pacific SST and November AO on the East Asian winter temperature. J Geophys Res Atmos 117:D12104. doi:10.1029/2012JD017527

  • Kistler R, Collins W, Saha S, White G, Woollen J, Kalnay E, Chelliah M, Ebisuzaki W, Kanamitsu M, Kousky V (2001) The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82:247–267

    Article  Google Scholar 

  • Kug JS, Kang IS (2006) Interactive feedback between ENSO and the Indian Ocean. J Clim 19:1784–1801

    Article  Google Scholar 

  • Kug JS, An SI, Jin FF, Kang IS (2005) Preconditions for El Niño and La Niña onsets and their relation to the Indian Ocean. Geophys Res Lett 32:L05706. doi:10.1029/2004GL021674

    Google Scholar 

  • Kumar KK, Rajagopalan B, Cane MA (1999) On the weakening relationship between the Indian monsoon and ENSO. Science 284:2156–2159

    Article  Google Scholar 

  • Lau NC (1988) Variability of the observed midlatitude storm tracks in relation to low- frequency changes in the circulation pattern. J Atmos Sci 45:2718–2743

    Article  Google Scholar 

  • Lau NC, Holopainen EO (1984) Transient eddy forcing of the time-mean flow as identified by geopotential tendencies. J Atmos Sci 41:313–328

    Article  Google Scholar 

  • Lau NC, Nath MJ (1991) Variability of the baroclinic and barotropic transient eddy forcing associated with monthly changes in the midlatitude storm tracks. J Atmos Sci 48:2589–2613

    Article  Google Scholar 

  • Lau NC, Nath MJ (1996) The role of the ‘‘atmospheric bridge’’ in linking tropical Pacific ENSO events to extratropical SST anomalies. J Clim 9:2036–2057

    Article  Google Scholar 

  • Lee SS, Lee JY, Wang B, Ha KJ, Heo KY, Jin FF, Straus DM, Shukla J (2012) Interdecadal changes in the storm track activity over the North Pacific and North Atlantic. Clim Dyn 39:313–327. doi:10.1007/s00382-011-1188-9

    Article  Google Scholar 

  • Limpasuvan V, Hartmann DL (1999) Eddies and the annular modes of climate variability. Geophys Res Lett 26:3133–3136. doi:10.1029/1999GL010478

    Article  Google Scholar 

  • Limpasuvan V, Hartmann DL (2000) Wave-maintained annular modes of climate variability. J Clim 13:4414–4429

    Article  Google Scholar 

  • Linkin ME, Nigam S (2008) The north pacific oscillation-west Pacific teleconnection pattern: mature-phase structure and winter impacts. J Clim 21:1979–1997

    Article  Google Scholar 

  • Lorenz DJ, Hartmann DL (2001) Eddy-zonal flow feedback in the Southern Hemisphere. J Atmos Sci 58:3312–3327

    Article  Google Scholar 

  • Lorenz DJ, Hartmann DL (2003) Eddy-zonal flow feedback in the Northern Hemisphere winter. J Clim 16:1212–1227

    Article  Google Scholar 

  • Mao R, Gong DY, Yang J, Bao JD (2011) Linkage between the Arctic Oscillation and winter extreme precipitation over central-southern China. Clim Res 50:187–201

    Article  Google Scholar 

  • Matsuno T (1966) Quasi-geostrophic motions in the equatorial area. J Meteor Soc Jpn 44:25–43

    Google Scholar 

  • McPhaden MJ (2003) Tropical Pacific Ocean heat content variations and ENSO persistence barriers. Geophys Res Lett 30:1480. doi:10.1029/2003GL016872

    Article  Google Scholar 

  • McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in Earth science. Science 314:1740–1745

    Article  Google Scholar 

  • Murakami M (1979) Large-scale aspects of deep convective activity over the GATE area. Mon Wea Rev 107:994–1013

    Article  Google Scholar 

  • Nakamura T, Tachibana Y, Honda M, Yamane S (2006) Influence of the Northern Hemisphere annular mode on ENSO by modulating westerly wind bursts. Geophys Res Lett 33. doi:10.1029/2005GL025432

  • Nakamura T, Tachibana Y, Shimoda H (2007) Importance of cold and dry surges in substantiating the NAM and ENSO relationship. Geophys Res Lett 34. doi:10.1029/2007GL031220

  • North GR, Moeng FJ, Bell TL, Cahalan RF (1982a) The latitude dependence of the variance of zonally averaged quantities. Mon Wea Rev 110:319–326

    Article  Google Scholar 

  • North GR, Bell TL, Cahalan RF, Moeng FJ (1982b) Sampling errors in the estimation of empirical orthogonal functions. Mon Wea Rev 110:699–706

    Article  Google Scholar 

  • Park TW, Ho CH, Yang S (2011) Relationship between the Arctic Oscillation and Cold Surges over East Asia. J Clim 24:68–83

    Article  Google Scholar 

  • Peixdto JP, Oort AH (1992) Physics of climate. American Institute of Physics, New York

    Google Scholar 

  • Penland C, Sardeshmukh PD (1995) The optimal-growth of tropical sea-surface temperature anomalies. J Clim 8:1999–2024

    Article  Google Scholar 

  • Power S, Casey T, Folland C, Colman A, Mehta V (1999) Inter-decadal modulation of the impact of ENSO on Australia. Clim Dyn 15:319–324

    Article  Google Scholar 

  • Rayner N, Parker D, Horton E, Folland C, Alexander L, Rowell D, Kent E, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296

    Article  Google Scholar 

  • Son HY, Park W, Jeong JH, Yeh SW, Kim BM, Kwon M, Kug JS (2012) Nonlinear impact of the Arctic Oscillation on extratropical surface air temperature. J Geophys Res 117:D19102. doi:10.1029/2012JD018090

    Google Scholar 

  • Thompson DW, Wallace JM (1998) The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300. doi:10.1029/98GL00950

    Article  Google Scholar 

  • Thompson DW, Wallace JM (2000) Annular modes in the extratropical circulation. Part I: month-to-month variability. J Clim 13:1000–1016

    Article  Google Scholar 

  • Thompson DW, Lee S, Baldwin MP (2003) Atmospheric processes governing the northern hemisphere annular mode/North Atlantic oscillation. Geophys Monogr Am Geophys Union 134:81–112

    Google Scholar 

  • Trenberth KE (1986) An assessment of the impact of transient eddies on the zonal flow during a blocking episode using localized Eliassen-Palm flux diagnostics. J Atmos Sci 43:2070–2087

    Article  Google Scholar 

  • Trenberth KE (1997) The definition of el nino. Bull Am Meteor Soc 78:2771–2777

    Article  Google Scholar 

  • Uppala SM et al (2005) The ERA-40 re-analysis. Quart J R Meteorol Soc 131:2961–3012

    Article  Google Scholar 

  • Vimont DJ, Battisti DS, Hirst AC (2001) Footprinting: a seasonal connection between the tropics and mid-latitudes. Geophys Res Lett 28:3923–3926

    Article  Google Scholar 

  • Vimont DJ, Wallace JM, Battisti DS (2003) The seasonal footprinting mechanism in the Pacific: implications for ENSO. J Clim 16:2668–2675

    Article  Google Scholar 

  • Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the northern hemisphere winter. Mon Wea Rev 109:784–812

    Article  Google Scholar 

  • Wang B, Wang Y (1996) Temporal structure of the Southern Oscillation as revealed by waveform and wavelet analysis. J Clim 9:1586–1598

    Article  Google Scholar 

  • Wang C, Weisberg RH (2000) The 1997–1998 El Niño evolution relative to previous El Niño events. J Clim 13:488–501

    Article  Google Scholar 

  • Wang B, Yang J, Zhou T, Wang B (2008) Interdecadal changes in the major modes of Asian-Australian monsoon variability: strengthening relationship with ENSO since the late 1970s. J Clim 21:1771–1789

    Article  Google Scholar 

  • Wang X, Wang C, Zhou W, Wang D, Song J (2011) Teleconnected influence of North Atlantic sea surface temperature on the El Nino onset. Clim Dyn 37:663–676

    Article  Google Scholar 

  • Wang SY, L’Heureux M, Chia HH (2012) ENSO prediction one year in advance using western North Pacific sea surface temperatures. Geophys Res Lett 39:L05702. doi:10.1029/2012GL050909

    Google Scholar 

  • Weisberg RH, Wang C (1997) A Western Pacific Oscillator Paradigm for the El Niño-Southern Oscillation. Geophys Res Lett 24:779–782. doi:10.1029/97GL00689

    Article  Google Scholar 

  • Woo SH, Kim BM, Jeong JH, Kim SJ, Lim GH (2012) Decadal changes in surface air temperature variability and cold surge characteristics over northeast Asia and their relation with the Arctic Oscillation for the past three decades (1979–2011). J Geophys Res 117:D18117. doi:10.1029/2011JD016929

    Google Scholar 

  • Wu R, Kirtman BP (2004) Understanding the impacts of the Indian Ocean on ENSO variability in a coupled GCM. J Clim 17:4019–4031

    Article  Google Scholar 

  • Wu B, Wang J (2002a) Winter Arctic oscillation, Siberian high and East Asian winter monsoon. Geophys Res Lett 29:1897. doi:10.1029/2002GL015373

    Article  Google Scholar 

  • Wu R, Wang B (2002b) A contrast of the East Asian summer monsoon-ENSO relationship between 1962–1977 and 1978–1993. J Clim 15:3266–3279

    Article  Google Scholar 

  • Wu R, Kinter J III, Kirtman BP (2005) Discrepancy of interdecadal changes in the Asian region among the NCEP-NCAR reanalysis, objective analyses, and observations. J Clim 18:3048–3067

    Article  Google Scholar 

  • Wu AM, Hsieh WW, Shabbar A, Boer GJ, Zwiers FW (2006) The nonlinear association between the Arctic Oscillation and North American winter climate. Clim Dyn 26:865–879. doi:10.1007/s00382-006-0118-8

    Article  Google Scholar 

  • Wu R, Yang S, Liu S, Sun L, Lian Y, Gao Z (2010) Changes in the relationship between Northeast China summer temperature and ENSO. J Geophys Res 115:D21107. doi:10.1029/2010JD014422

    Article  Google Scholar 

  • Yang H (2011) The significant relationship between the Arctic Oscillation (AO) in December and the January climate over South China. Adv Atmos Sci 28:398–407

    Article  Google Scholar 

  • Yu B, Zwiers F (2007) The impact of combined ENSO and PDO on the PNA climate: a 1,000-year climate modeling study. Clim Dyn 29:837–851. doi:10.1007/s00382-007-0267-4

    Article  Google Scholar 

  • Yu L, Weller RA, Liu WT (2003) Case analysis of a role of ENSO in regulating the generation of westerly wind bursts in the western equatorial Pacific. J Geophys Res Oceans 1978–2012:108

    Google Scholar 

  • Zhang Y, Wang WC (1997) Model-simulated northern winter cyclone and anticyclone activity under a greenhouse warming scenario. J Clim 10:1616–1634

    Article  Google Scholar 

Download references

Acknowledgments

We thank two anonymous reviewers for their constructive suggestions and comments, which helped to improve the paper. This work was supported jointly by the National Natural Science Foundation of China Grants 41025017 and 41230527, the Chinese Academy of Sciences Grant XDA11010401, and the Jiangsu Collaborative Innovation Center for Climate Change.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Yu, B. & Chen, W. An interdecadal change in the influence of the spring Arctic Oscillation on the subsequent ENSO around the early 1970s. Clim Dyn 44, 1109–1126 (2015). https://doi.org/10.1007/s00382-014-2152-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2152-2

Keywords

Navigation