Skip to main content
Log in

Pinealectomy stimulates and exogenous melatonin inhibits harmful effects of epileptiform activity during pregnancy in the hippocampus of newborn rats: an immunohistochemical study

  • Original Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Objectives

Epilepsy during the pregnancy is an important problem in clinical practice for newborn individuals. Recently, it has been demonstrated that mothers’ epileptic seizures have some harmful effects on newborns, but present data concerning the effects of epileptic phenomena in pregnant mothers on newborn pups are still limited. The current study was undertaken to investigate the morphological changes in the hippocampus of newborn pups of pinealectomized rats subjected to experimental epilepsy during pregnancy.

Methods

In this study, rats were randomly divided into four groups (ten animals each): intact control group, epilepsy control group, surgical pinealectomy + epilepsy group, and group with melatonin treatment following pinealectomy procedure. The animals in surgical pinealectomy + epilepsy and melatonin treatment groups underwent a surgical intervention consisting of pineal gland removal. At 1 month after surgical pinealectomy, an acute grand mal epileptic seizure was induced by 400 IU penicillin G administration into their hippocampal CA3 region on the 13th day of their pregnancy in all animals except the intact control animals. On the first neonatal day, the hippocampi were removed and processed for microscopic examination. Nestin expression was analysed in the developing hippocampal tissue.

Results

Normal migration and hippocampal maturation were determined in the postnatal rat hippocampus in intact control group, but the morphological structure of the hippocampus in the epilepsy control group corresponded to the early embryonal period. It was found that experimental epilepsy and pinealectomy enhanced nestin immunoreactivity, whereas exogenous melatonin treatment (30 μg/100 g body weight, intraperitoneal) inhibited pinealectomy-stimulated nestin expression in CA1 region of the hippocampus.

Conclusion

These findings suggest that epileptic seizures during pregnancy may cause an impaired hippocampal neurogenesis and neuronal maturation in the newborn, and the negative effects in the postnatal rat hippocampus are more dramatic after pinealectomy of the mother; conversely, melatonin administration suppresses these negative changes. This is the first report investigating the effects of maternal epilepsy during pregnancy in pinealectomized rats on nestin immunoexpression in the newborn rat hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Baka M, Uyanikgil Y, Yurtseven M, Turgut M (2004) Influence of penicillin-induced epileptic activity during pregnancy on postnatal hippocampal nestin expression in rats: light and electron microscopic observations. Childs Nerv Syst 20:726–733

    Article  PubMed  Google Scholar 

  2. Ball RH, Espinoza MI, Parer JT, Alon E, Vertommen J, Johnson J (1994) Regional blood flow in asphyxiated fetuses with seizures. Am J Obstet Gynecol 170:156–161

    PubMed  CAS  Google Scholar 

  3. Bliss DK, Bates PL (1973) A rapid and reliable technique for pinealectomizing rats. Physiol Behav 11:111–112

    Article  PubMed  CAS  Google Scholar 

  4. Blumcke I, Schewe JC, Normann S, Brustle O, Schramm J, Elger CE, Wiestler OD (2001) Increase of nestin-immunoreactivity neural precursor cells in the dentate gyrus of pediatric patients with early-onset temporal lobe epilepsy. Hippocampus 11:311–321

    Article  PubMed  CAS  Google Scholar 

  5. Coleshill SG, Binnie CD, Morris RG, Alarcon G, Van Emde Boas W, Velis DN, Simmons A, Polkey CE, van Veelen CW, van Rijen PC (2004) Material-specific recognition memory deficits elicited by unilateral hippocampal electrical stimulation. J Neurosci 24:1612–1616

    Article  PubMed  CAS  Google Scholar 

  6. Coppola G, Iervolino G, Mastrosimone M, La Torre G, Ruiu F, Pascotto A (2004) Melatonin in wake–sleep disorders in children, adolescents and young adults with mental retardation with or without epilepsy: a double-blind, cross-over, placebo-controlled trial. Brain Dev 26:373–376

    Article  PubMed  Google Scholar 

  7. Crino PB, Trojanowski JO, Eberwine J (1997) Internexin, MAP1B, and nestin in cortical dysplasia as markers of developmental maturity. Acta Neuropathol (Berl) 93:619–627

    Article  CAS  Google Scholar 

  8. Dahlstrand J, Lardelli M, Lendahl U (1995) Nestin mRNA expression correlates with the central nervous system progenitor cell state in many, but not all, regions of developing central nervous system. Brain Res Dev Brain Res 84:109–129

    Article  PubMed  CAS  Google Scholar 

  9. Dias MS, Sekhar LN (1990) Intracranial hemorrhage from aneurysms and arteriovenous malformations during pregnancy and puerperium. Neurosurgery 27:855–866

    Article  PubMed  CAS  Google Scholar 

  10. Duggal N, Iskander S, Hammond RR (2001) Nestin expression in cortical dysplasia. J Neurosurg 95:459–465

    Article  PubMed  CAS  Google Scholar 

  11. Dzhala V, Desfreres L, Melyan Z, Ben-Ari Y, Khazipov R (1999) Epileptogenic action of caffeine during anoxia in the neonatal rat hippocampus. Ann Neurol 46:95–102

    Article  PubMed  CAS  Google Scholar 

  12. Fisher RS, Prince DA (1977) Spike-wave rhythms in cat cortex induced by parenteral penicillin. II. Cellular features. Electroencephalogr Clin Neurophysiol 42:625–639

    Article  PubMed  CAS  Google Scholar 

  13. Guerrero JM, Reiter RJ (1992) A brief survey of pineal-immune system interrelationships. Endocr Res 18:91–113

    PubMed  CAS  Google Scholar 

  14. Gundersen HJG (1977) Notes on the estimation of the numerical density of arbitrary particles: the edge effect. J Microsc 111:219–223

    Google Scholar 

  15. Gupta M, Gupta YK, Agarwal S, Aneja S, Kalaivani M, Kohli K (2004) Effects of add-on melatonin administration on antioxidant enzymes in children with epilepsy taking carbamazepine monotherapy: a randomized, double-blind, placebo-controlled trial. Epilepsia 45:1636–1639

    Article  PubMed  CAS  Google Scholar 

  16. Hatten ME (1999) Central nervous system neuronal migration. Annu Rev Neurosci 22:511–539

    Article  PubMed  CAS  Google Scholar 

  17. Lendahl U, Zimmerman LB, McKay RDG (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60:585–595

    Article  PubMed  CAS  Google Scholar 

  18. Leon J, Acuna-Castroviejo D, Sainz RM, Mayo JC, Tan DX, Reiter RJ (2004) Melatonin and mitochondrial function. Life Sci 75:765–790

    Article  PubMed  CAS  Google Scholar 

  19. Li YB, Kaur C, Ling EA (1998) Neuronal degeneration and microglial reaction in the fetal and postnatal rat brain after transient maternal hypoxia. Neurosci Res 32:137–148

    Article  PubMed  CAS  Google Scholar 

  20. Matsuda M, Katoh-Semba R, Kitani H, Tomooka Y (1996) A possible role of the nestin protein in the developing central nervous system in rat embryos. Brain Res 723:177–189

    Article  PubMed  CAS  Google Scholar 

  21. Matthies H, Schroeder H, Becker A, Loh H, Hollt V, Krug M (2000) Lack of expression of long-term potentiation in the dentate gyrus but not in the CA1 region of the hippocampus of mu-opioid receptor-deficient mice. Neuropharmacology 39:952–960

    Article  PubMed  CAS  Google Scholar 

  22. McKay R (1997) Stem cells in the central nervous system. Science 276:66–71

    Article  PubMed  CAS  Google Scholar 

  23. Mohapel P, Ekdahl CT, Lindvall O (2004) Status epilepticus severity influences the long-term outcome of neurogenesis in the adult dentate gyrus. Neurobiol Dis 15:196–205

    Article  PubMed  Google Scholar 

  24. Mokry J, Nemecek S (1998) Immunohistochemical detection of intermediate filament nestin. Acta Medica (Hradec Kralove) 41:73–80

    CAS  Google Scholar 

  25. Okatani Y, Okamoto K, Hayachi K, Wakatsuki A, Sagara Y (1998) Maternal–fetal transfer of melatonin in human pregnancy near term. J Pineal Res 25:129–134

    Article  PubMed  CAS  Google Scholar 

  26. Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic, Australia (plate 25)

    Google Scholar 

  27. Phillips SA, Shanahan RJ (1989) Etiology and mortality of status epilepticus in children. Arch Neurol 46:74–76

    PubMed  CAS  Google Scholar 

  28. Rakic P (1990) Principles of neural cell migration. Experientia 46:882–891

    Article  PubMed  CAS  Google Scholar 

  29. Ray M, Mediratta PK, Reeta KH, Mahajan P, Sharma KK (2004) Receptor mechanisms involved in the anticonvulsant effect of melatonin in maximal electroshock seizures. Methods Find Exp Clin Pharmacol 26:177–181

    Article  PubMed  CAS  Google Scholar 

  30. Reiter RJ, Tan D-X, Leon J, Kılıc U, Kılıc E (2005) When melatonin gets on your nerves: its beneficial actions in experimental models of stroke. Exp Biol Med 230:104–117

    CAS  Google Scholar 

  31. Sandyk R (1990) Possible role of pineal melatonin in the mechanisms of aging. Int J Neurosci 52:85–92

    Article  PubMed  CAS  Google Scholar 

  32. Schneiderman JH, Sterling CA, Luo R (1994) Hippocampal plasticity following epileptiform bursting produced by GABAA antagonists. Neuroscience 59:259–273

    Article  PubMed  CAS  Google Scholar 

  33. Spornitz UM, Socin CD, Dravid AA (1999) Estrous stage determination in rats by means of scanning electron microscopic images of uterine surface epithelium. Anat Rec 254:116–126

    Article  PubMed  CAS  Google Scholar 

  34. Tohyama T, Lee VMY, Rorke LB, Marvin M, McKay RG, Trojanowski JQ (1992) Nestin expression in embryonic human neuroepithelium and in human neuroepithelial tumor cells. Lab Invest 66:303–313

    PubMed  CAS  Google Scholar 

  35. Turgut M, Uyanıkgil Y, Baka M, Tunç AT, Yavaşoğlu A, Yurtseven ME, Kaplan S (2005) Pinealectomy exaggerates and melatonin treatment suppresses neuroma formation of transected sciatic nerve in rats: gross morphological, histological and stereological analysis. J Pineal Res 38:284–291

    Article  PubMed  CAS  Google Scholar 

  36. Turner DA, Buhl EH, Hailer NP, Nitsch R (1998) Morphological features of the entornial hippocampal connection. Neurobiology 55:537–562

    Article  CAS  Google Scholar 

  37. Umeoka S, Miyamoto O, Nakagawa T, Janjua NA, Nagao S, Itano T (2001) Expression of an embryonic intermediate filament protein in amygdaloid kindled rats. Epilepsy Res 43:249–253

    Article  PubMed  CAS  Google Scholar 

  38. Vidal S, Lombardero M, Sanchez P, Roman A, Moya L (1995) An easy method for the removal of Epon resin from semi-thin sections. Application of the avidin–biotin technique. Histochem J 27:204–209

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Mehmet Koltaş for linguistic help and to Erdinç Yılmaz and İsmail Zonguldak for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Turgut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turgut, M., Uyanıkgil, Y., Atş, U. et al. Pinealectomy stimulates and exogenous melatonin inhibits harmful effects of epileptiform activity during pregnancy in the hippocampus of newborn rats: an immunohistochemical study. Childs Nerv Syst 22, 481–488 (2006). https://doi.org/10.1007/s00381-005-0012-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-005-0012-4

Keywords

Navigation