Skip to main content
Log in

Cardiac unloading by LVAD support differentially influences components of the cGMP–PKG signaling pathway in ischemic and dilated cardiomyopathy

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Implantation of left ventricular assist devices (LVADs) as bridge to transplant in end-stage heart failure allows for analyzing reverse remodeling processes of the supported heart. Whether this therapy influences the cGMP–PKG signaling pathway, which is currently under thorough investigation for developing new heart failure therapeutics, is unknown. In fourteen end-stage heart failure patients (8 with dilated cardiomyopathy, DCM; 6 with ischemic cardiomyopathy, ICM) tissue specimens of left ventricles were collected at LVAD implantation and afterwards at receiver heart explantation, respectively. Then the expressions of key components of the cGMP–PKG signaling pathway were determined by polymerase chain reaction (ANP; BNP; natriuretic peptide receptor A, NPR-A; natriuretic peptide receptor C, NPR-C; neprilysin; NOS3; soluble guanylyl cyclase, sGC; PDE5; cGMP-dependent protein kinase G, PKG) and enzyme-linked immunosorbent assay (cGMP), respectively. Patients were predominantly male, 52 ± 10 years old, were receiving recommended heart failure therapy, and had their donor organ implanted after 351 ± 317 days of LVAD support. Except for more DCM patients with ICD therapy, no significant differences were detected between ICM and DCM, which also applies to the expression of cGMP–PKG pathway components at baseline. After LVAD support, ANP, NPR-C, and cGMP were significantly down-regulated and neprilysin, PDE5, and PKG I expressions were reduced with borderline significance in DCM, but not in ICM patients. Multiple significant correlations were found for expression differences (i.e., expression at LVAD implantation minus expression at heart transplantation) both in DCM and ICM, even though there was a closer connection between the NO and NP side of the cGMP–PKG pathway in DCM patients. Furthermore, duration of LVAD support negatively correlated with expression differences of PKG I, PDE5, and sGC in ICM, but not in DCM. Originating from the same activation level at LVAD implantation, cardiac unloading significantly alters key components of the cGMP–PKG pathway in DCM, but not in ICM patients. This etiology-specific regulation should be considered when analyzing therapeutic interventions with effects on this signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, González-Juanatey JR, Harjola V-P, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 37(27):2129–2200

    Article  PubMed  Google Scholar 

  2. Interagency Registry for Mechanically Assisted Circulatory Support Quarterly Statistical Report (2017) Q1 Implant and event dates: June 23, 2006 to March 31, 2017. http://www.uab.edu/medicine/intermacs/images/Federal_Quarterly_Report/Statistical_Summaries/Federal_Partners_Report_2017_Q1.pdf. Accessed 26 June 2017

  3. Birks EJ (2013) Molecular changes after left ventricular assist device support for heart failure. Circ Res 113(6):777–791

    Article  PubMed  CAS  Google Scholar 

  4. Münzel T, Feil R, Mülsch A, Lohmann SM, Hofmann F, Walter U (2003) Physiology and pathophysiology of vascular signaling controlled by guanosine 3′,5′-cyclic monophosphate-dependent protein kinase corrected. Circulation 108(18):2172–2183

    Article  PubMed  Google Scholar 

  5. Kong Q, Blanton RM (2013) Protein kinase G I and heart failure: shifting focus from vascular unloading to direct myocardial antiremodeling effects. Circ Heart Fail 6(6):1268–1283

    Article  PubMed  PubMed Central  Google Scholar 

  6. Franciosa JA, Nordstrom LA, Cohn JN (1978) Nitrate therapy for congestive heart failure. JAMA 240(5):443–446

    Article  PubMed  CAS  Google Scholar 

  7. Leier CV, Huss P, Magorien RD, Unverferth DV (1983) Improved exercise capacity and differing arterial and venous tolerance during chronic isosorbide dinitrate therapy for congestive heart failure. Circulation 67(4):817–822

    Article  PubMed  CAS  Google Scholar 

  8. Gheorghiade M, Greene SJ, Butler J, Filippatos G, Lam CSP, Maggioni AP, Ponikowski P, Shah SJ, Solomon SD, Kraigher-Krainer E, Samano ET, Müller K, Roessig L, Pieske B (2015) Effect of vericiguat, a soluble guanylate cyclase stimulator, on natriuretic peptide levels in patients with worsening chronic heart failure and reduced ejection fraction: the SOCRATES-REDUCED randomized trial. JAMA 314(21):2251–2262

    Article  PubMed  CAS  Google Scholar 

  9. Pieske B, Maggioni AP, Lam CSP, Pieske-Kraigher E, Filippatos G, Butler J, Ponikowski P, Shah SJ, Solomon SD, Scalise A-V, Mueller K, Roessig L, Gheorghiade M (2017) Vericiguat in patients with worsening chronic heart failure and preserved ejection fraction: results of the SOluble guanylate Cyclase stimulatoR in heArT failurE patientS with PRESERVED EF (SOCRATES-PRESERVED) study. Eur Heart J 38(15):1119–1127

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chen HH, Glockner JF, Schirger JA, Cataliotti A, Redfield MM, Burnett JC (2012) Novel protein therapeutics for systolic heart failure: chronic subcutaneous B-type natriuretic peptide. J Am Coll Cardiol 60(22):2305–2312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Guazzi M, Vicenzi M, Arena R, Guazzi MD (2011) PDE5 inhibition with sildenafil improves left ventricular diastolic function, cardiac geometry, and clinical status in patients with stable systolic heart failure: results of a 1-year, prospective, randomized, placebo-controlled study. Circ Heart Fail 4(1):8–17

    Article  PubMed  CAS  Google Scholar 

  12. Redfield MM, Chen HH, Borlaug BA, Semigran MJ, Lee KL, Lewis G, LeWinter MM, Rouleau JL, Bull DA, Mann DL, Deswal A, Stevenson LW, Givertz MM, Ofili EO, O’Connor CM, Felker GM, Goldsmith SR, Bart BA, McNulty SE, Ibarra JC, Lin G, Oh JK, Patel MR, Kim RJ, Tracy RP, Velazquez EJ, Anstrom KJ, Hernandez AF, Mascette AM, Braunwald E (2013) Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA 309(12):1268–1277

    Article  PubMed  CAS  Google Scholar 

  13. McMurray JJV, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, Rouleau JL, Shi VC, Solomon SD, Swedberg K, Zile MR (2014) Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 371(11):993–1004

    Article  PubMed  CAS  Google Scholar 

  14. Solomon SD, Zile M, Pieske B, Voors A, Shah A, Kraigher-Krainer E, Shi V, Bransford T, Takeuchi M, Gong J, Lefkowitz M, Packer M, McMurray JJV (2012) The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial. Lancet 380(9851):1387–1395

    Article  PubMed  CAS  Google Scholar 

  15. Takimoto E, Champion HC, Li M, Belardi D, Ren S, Rodriguez ER, Bedja D, Gabrielson KL, Wang Y, Kass DA (2005) Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med 11(2):214–222

    Article  PubMed  CAS  Google Scholar 

  16. Frantz S, Klaiber M, Baba HA, Oberwinkler H, Völker K, Gaβner B, Bayer B, Abeβer M, Schuh K, Feil R, Hofmann F, Kuhn M (2013) Stress-dependent dilated cardiomyopathy in mice with cardiomyocyte-restricted inactivation of cyclic GMP-dependent protein kinase I. Eur Heart J 34(16):1233–1244

    Article  PubMed  CAS  Google Scholar 

  17. Ishigai Y, Mori T, Ikeda T, Fukuzawa A, Shibano T (1997) Role of bradykinin-NO pathway in prevention of cardiac hypertrophy by ACE inhibitor in rat cardiomyocytes. Am J Physiol 273(6 Pt 2):H2659–H2663

    PubMed  CAS  Google Scholar 

  18. Buys ES, Raher MJ, Blake SL, Neilan TG, Graveline AR, Passeri JJ, Llano M, Perez-Sanz TM, Ichinose F, Janssens S, Zapol WM, Picard MH, Bloch KD, Scherrer-Crosbie M (2007) Cardiomyocyte-restricted restoration of nitric oxide synthase 3 attenuates left ventricular remodeling after chronic pressure overload. Am J Physiol Heart Circ Physiol 293(1):H620–H627

    Article  PubMed  CAS  Google Scholar 

  19. Kishimoto I, Rossi K, Garbers DL (2001) A genetic model provides evidence that the receptor for atrial natriuretic peptide (guanylyl cyclase-A) inhibits cardiac ventricular myocyte hypertrophy. Proc Natl Acad Sci USA 98(5):2703–2706

    Article  PubMed  CAS  Google Scholar 

  20. Bartling B, Milting H, Schumann H, Darmer D, Arusoglu L, Koerner MM, El-Banayosy A, Koerfer R, Holtz J, Zerkowski HR (1999) Myocardial gene expression of regulators of myocyte apoptosis and myocyte calcium homeostasis during hemodynamic unloading by ventricular assist devices in patients with end-stage heart failure. Circulation 100(19 Suppl):II216–II223

    PubMed  CAS  Google Scholar 

  21. Chen Y, Park S, Li Y, Missov E, Hou M, Han X, Hall JL, Miller LW, Bache RJ (2003) Alterations of gene expression in failing myocardium following left ventricular assist device support. Physiol Genom 14(3):251–260

    Article  Google Scholar 

  22. Dipla K, Mattiello JA, Jeevanandam V, Houser SR, Margulies KB (1998) Myocyte recovery after mechanical circulatory support in humans with end-stage heart failure. Circulation 97(23):2316–2322

    Article  PubMed  CAS  Google Scholar 

  23. George RS, Birks EJ, Cheetham A, Webb C, Smolenski RT, Khaghani A, Yacoub MH, Kelion A (2013) The effect of long-term left ventricular assist device support on myocardial sympathetic activity in patients with non-ischaemic dilated cardiomyopathy. Eur J Heart Fail 15(9):1035–1043

    Article  PubMed  CAS  Google Scholar 

  24. CIBIS Investigators and Committees (1994) A randomized trial of beta-blockade in heart failure. The cardiac insufficiency bisoprolol study (CIBIS). CIBIS Investigators and Committees. Circulation 90(4):1765–1773

    Article  Google Scholar 

  25. Packer M, O’Connor CM, Ghali JK, Pressler ML, Carson PE, Belkin RN, Miller AB, Neuberg GW, Frid D, Wertheimer JH, Cropp AB, DeMets DL (1996) Effect of amlodipine on morbidity and mortality in severe chronic heart failure. Prospective Randomized Amlodipine Survival Evaluation Study Group. N Engl J Med 335(15):1107–1114

    Article  PubMed  CAS  Google Scholar 

  26. Køber L, Thune JJ, Nielsen JC, Haarbo J, Videbæk L, Korup E, Jensen G, Hildebrandt P, Steffensen FH, Bruun NE, Eiskjær H, Brandes A, Thøgersen AM, Gustafsson F, Egstrup K, Videbæk R, Hassager C, Svendsen JH, Høfsten DE, Torp-Pedersen C, Pehrson S (2016) Defibrillator implantation in patients with nonischemic systolic heart failure. N Engl J Med 375(13):1221–1230

    Article  PubMed  Google Scholar 

  27. Miller WL, Hartman KA, Burritt MF, Burnett JC, Jaffe AS (2007) Troponin, B-type natriuretic peptides and outcomes in severe heart failure: differences between ischemic and dilated cardiomyopathies. Clin Cardiol 30(5):245–250

    Article  PubMed  Google Scholar 

  28. Deng MC, Brisse B, Erren M, Khurana C, Breithardt G, Scheld HH (1997) Ischemic versus idiopathic cardiomyopathy: differing neurohumoral profiles despite comparable peak oxygen uptake. Int J Cardiol 61(3):261–268

    Article  PubMed  CAS  Google Scholar 

  29. Tarazón E, Roselló-Lletí E, Rivera M, Ortega A, Molina-Navarro MM, Triviño JC, Lago F, González-Juanatey JR, Orosa P, Montero JA, Salvador A, Portolés M (2014) RNA sequencing analysis and atrial natriuretic peptide production in patients with dilated and ischemic cardiomyopathy. PLoS One 9(3):e90157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Bielecka-Dabrowa A, Sakowicz A, Misztal M, von Haehling S, Ahmed A, Pietrucha T, Rysz J, Banach M (2016) Differences in biochemical and genetic biomarkers in patients with heart failure of various etiologies. Int J Cardiol 221:1073–1080

    Article  PubMed  Google Scholar 

  31. Qiu LL, Ding XJ, Zhu HT, Gao LW, Tang JF, Liu XQ (2016) Comparative RNA profile analysis of idiopathic dilated cardiomyopathy and ischemic cardiomyopathy. Genet Mol Res. https://doi.org/10.4238/gmr.15016910

    Article  PubMed  Google Scholar 

  32. O’Connor CM, Starling RC, Hernandez AF, Armstrong PW, Dickstein K, Hasselblad V, Heizer GM, Komajda M, Massie BM, McMurray JJV, Nieminen MS, Reist CJ, Rouleau JL, Swedberg K, Adams KF, Anker SD, Atar D, Battler A, Botero R, Bohidar NR, Butler J, Clausell N, Corbalán R, Costanzo MR, Dahlstrom U, Deckelbaum LI, Diaz R, Dunlap ME, Ezekowitz JA, Feldman D, Felker GM, Fonarow GC, Gennevois D, Gottlieb SS, Hill JA, Hollander JE, Howlett JG, Hudson MP, Kociol RD, Krum H, Laucevicius A, Levy WC, Méndez GF, Metra M, Mittal S, Oh B-H, Pereira NL, Ponikowski P, Tang WHW, Wilson WH, Tanomsup S, Teerlink JR, Triposkiadis F, Troughton RW, Voors AA, Whellan DJ, Zannad F, Califf RM (2011) Effect of nesiritide in patients with acute decompensated heart failure. N Engl J Med 365(1):32–43

    Article  PubMed  Google Scholar 

  33. Yancy CW, Krum H, Massie BM, Silver MA, Stevenson LW, Cheng M, Kim SS, Evans R (2008) Safety and efficacy of outpatient nesiritide in patients with advanced heart failure: results of the second follow-up serial infusions of nesiritide (FUSION II) trial. Circ Heart Fail 1(1):9–16

    Article  PubMed  CAS  Google Scholar 

  34. Shahinian JH, Mayer B, Tholen S, Brehm K, Biniossek ML, Füllgraf H, Kiefer S, Heizmann U, Heilmann C, Rüter F, Grapow M, Reuthebuch OT, Eckstein F, Beyersdorf F, Schilling O, Siepe M (2017) Proteomics highlights decrease of matricellular proteins in left ventricular assist device therapy. Eur J Cardiothorac Surg 51(6):1063–1071

    Article  PubMed  Google Scholar 

  35. Prescimone T, D’Amico A, Caselli C, Cabiati M, Viglione F, Caruso R, Verde A, Del Ry S, Trivella MG, Giannessi D (2015) Caspase-1 transcripts in failing human heart after mechanical unloading. Cardiovasc Pathol 24(1):11–18

    Article  PubMed  CAS  Google Scholar 

  36. Kassiotis C, Ballal K, Wellnitz K, Vela D, Gong M, Salazar R, Frazier OH, Taegtmeyer H (2009) Markers of autophagy are downregulated in failing human heart after mechanical unloading. Circulation 120(11 Suppl):S191–S197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Taketani S, Sawa Y, Fukushima N, Masai T, Kawaguchi N, Onishi S, Matsuda H (1997) Myocardial histological changes in dilated cardiomyopathy during a long-term left ventricular assist device support. Heart Vessels 12(2):98–100

    Article  PubMed  CAS  Google Scholar 

  38. Ammirati E, Oliva FG, Colombo T, Russo CF, Cipriani MG, Garascia A, Guida V, Colombo G, Verde A, Perna E, Cannata A, Paino R, Martinelli L, Frigerio M (2016) Mid-term survival after continuous-flow left ventricular assist device versus heart transplantation. Heart Vessels 31(5):722–733

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We greatly appreciate the outstanding technical assistance of Ms. Gabriela Pietrzyk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Birner.

Ethics declarations

Conflict of interest

All authors declare that they do not have any conflicts of interest.

Additional information

This paper contains parts of the MD thesis of Mr. Sven Persoon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Persoon, S., Paulus, M., Hirt, S. et al. Cardiac unloading by LVAD support differentially influences components of the cGMP–PKG signaling pathway in ischemic and dilated cardiomyopathy. Heart Vessels 33, 948–957 (2018). https://doi.org/10.1007/s00380-018-1149-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-018-1149-x

Keywords

Navigation