Skip to main content

Advertisement

SpringerLink
Go to cart
  1. Home
  2. Advances in Atmospheric Sciences
  3. Article
Influence of the NAO on Wintertime Surface Air Temperature over East Asia: Multidecadal Variability and Decadal Prediction
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Contribution of SST change to multidecadal global and continental surface air temperature trends between 1910 and 2013

23 November 2019

Yidan Xu, Jianping Li, … Fuchang Wang

How much of monthly mean precipitation variability over global land is associated with SST anomalies?

02 November 2019

Zeng-Zhen Hu, Arun Kumar, … Boyin Huang

Atmospheric pathway between Atlantic multidecadal variability and European summer temperature in the atmospheric general circulation model ECHAM6

17 December 2018

Rohit Ghosh, Wolfgang A. Müller, … Jürgen Bader

Contributors to linkage between Arctic warming and East Asian winter climate

05 June 2021

Xinping Xu, Shengping He, … Huijun Wang

The north-east North Atlantic Tripole implicated as a predictor of the August precipitation decadal variability over north China

21 November 2022

Tiejun Xie, Ji Wang, … Yingjuan Zhang

Impact of Arctic sea ice variations on winter temperature anomalies in northern hemispheric land areas

30 July 2018

T. Koenigk, Y. Gao, … S. Yang

El Niño teleconnection to the Euro-Mediterranean late-winter: the role of extratropical Pacific modulation

03 May 2021

Marianna Benassi, Giovanni Conti, … Constantin Ardilouze

Simulated Influence of the Atlantic Multidecadal Oscillation on Summer Eurasian Nonuniform Warming since the Mid-1990s

03 July 2019

Xueqian Sun, Shuanglin Li, … Riyu Lu

NAO implicated as a predictor of the surface air temperature multidecadal variability over East Asia

14 January 2019

Tiejun Xie, Jianping Li, … Juan Feng

Download PDF

Associated Content

Part of a collection:

Extreme Cold Events from East Asia to North America in Winter 2020/21

  • Original Paper
  • Open Access
  • Published: 31 August 2021

Influence of the NAO on Wintertime Surface Air Temperature over East Asia: Multidecadal Variability and Decadal Prediction

  • Jianping Li1,2,
  • Tiejun Xie3,
  • Xinxin Tang1,
  • Hao Wang1,
  • Cheng Sun3,
  • Juan Feng3,
  • Fei Zheng4 &
  • …
  • Ruiqiang Ding5 

Advances in Atmospheric Sciences volume 39, pages 625–642 (2022)Cite this article

  • 589 Accesses

  • 19 Citations

  • 2 Altmetric

  • Metrics details

Abstract

In this paper, we investigate the influence of the winter NAO on the multidecadal variability of winter East Asian surface air temperature (EASAT) and EASAT decadal prediction. The observational analysis shows that the winter EASAT and East Asian minimum SAT (EAmSAT) display strong in-phase fluctuations and a significant 60–80-year multidecadal variability, apart from a long-term warming trend. The winter EASAT experienced a decreasing trend in the last two decades, which is consistent with the occurrence of extremely cold events in East Asia winters in recent years. The winter NAO leads the detrended winter EASAT by 12–18 years with the greatest significant positive correlation at the lead time of 15 years. Further analysis shows that ENSO may affect winter EASAT interannual variability, but does not affect the robust lead relationship between the winter NAO and EASAT. We present the coupled oceanic-atmospheric bridge (COAB) mechanism of the NAO influences on winter EASAT multidecadal variability through its accumulated delayed effect of ∼15 years on the Atlantic Multidecadal Oscillation (AMO) and Africa–Asia multidecadal teleconnection (AAMT) pattern. An NAO-based linear model for predicting winter decadal EASAT is constructed on the principle of the COAB mechanism, with good hindcast performance. The winter EASAT for 2020–34 is predicted to keep on fluctuating downward until ∼2025, implying a high probability of occurrence of extremely cold events in coming winters in East Asia, followed by a sudden turn towards sharp warming. The predicted 2020/21 winter EASAT is almost the same as the 2019/20 winter.

摘要

本文研究了冬季北大西洋涛动 (NAO)对冬季东亚地面气温多年代际变率的影响, 并对冬季东亚地面气温做了年代际预测. 观测分析表明, 除了具有长期的增温趋势外, 冬季东亚地面气温和东亚最低气温表现出很强的同相波动和显著的60–80年的多年代际变率. 在过去20年, 冬季东亚地面气温呈下降趋势, 这为近年来东亚冬季极寒事件的发生提供了有利背景. 冬季NAO超前冬季东亚地面气温约12–18年, 在超前15年时正相关最大. 进一步分析表明, 厄尔尼诺-南方涛动 (ENSO) 对冬季东亚地面气温的年际变率有一定影响, 但不影响冬季NAO与东亚地面气温之间的超前关系. 我们提出了海气耦合桥 (COAB) 机制, 即NAO通过对大西洋多年代际振荡 (AMO) 和北非-东亚多年代际遥相关 (AAMT) 的累积延迟效应, 来影响冬季地面气温的多年代际变率. 基于COAB机制, 建立了以NAO为预报因子的冬季地面气温年代际预测模型, 该模型后报性能良好. 该预测模型显示, 在2020–34年, 冬季东亚地面气温将继续向下小幅波动直至2025年, 这意味着东亚未来发生冬季极寒事件的可能性很大, 然后, 将转向急剧变暖. 预测的2020/21年冬季地面气温与2019/20年冬季接近.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  • Årthun, M., T. Eldevik, E. Viste, H. Drange, T. Furevik, H. L. Johnson, and N. S. Keenlyside, 2017: Skillful prediction of northern climate provided by the ocean. Nature Communications, 8, 15875, https://doi.org/10.1038/ncomms15875.

    Article  Google Scholar 

  • Chen, J. W., Y. Deng, W. S. Lin, and S. Yang, 2018: A process-based decomposition of decadal-scale surface temperature evolutions over East Asia. Climate Dyn., 51, 4371–4383, https://doi.org/10.1007/s00382-017-3872-x.

    Article  Google Scholar 

  • Chen, W., X. Q. Lan, L. Wang, and Y. Ma, 2013: The combined effects of the ENSO and the Arctic Oscillation on the winter climate anomalies in East Asia. Chinese Science Bulletin, 58(12), 1355–1362, https://doi.org/10.1007/s11434-012-5654-5.

    Article  Google Scholar 

  • Compo, G. P., and Coauthors, 2011: The twentieth century reanalysis project. Quart. J. Roy. Meteor. Soc., 137, 1–28, https://doi.org/10.1002/qj.776.

    Article  Google Scholar 

  • Delworth, T. L., and R. J. Greatbatch, 2000: Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. J. Climate, 13, 1481–1495, https://doi.org/10.1175/1520-0442(2000)013<1481:MTCVDB>2.0.CO;2.

    Article  Google Scholar 

  • Delworth, T. L., and F. R. Zeng, 2016: The impact of the North Atlantic Oscillation on climate through its influence on the Atlantic Meridional Overturning Circulation. J. Climate, 29, 941–962, https://doi.org/10.1175/JCLI-D-15-0396.1.

    Article  Google Scholar 

  • Delworth, T. L., F. R. Zeng, G. A. Vecchi, X. S. Yang, L. P. Zhang, and R. Zhang, 2016: The North Atlantic Oscillation as a driver of rapid climate change in the Northern Hemisphere. Nature Geoscience, 9, 509–512, https://doi.org/10.1038/ngeo2738.

    Article  Google Scholar 

  • Ding, Y. H., and Coauthors, 2007: China’s national assessment report on climate change (I): Climate change in China and the future trend. Advances in Climate Change Research, 3, 1–5.

    Google Scholar 

  • Ding, Y. H., and Coauthors, 2014: Interdecadal variability of the East Asian winter monsoon and its possible links to global climate change. J. Meteor. Res., 28(5), 693–713, https://doi.org/10.1007/s13351-014-4046-y.

    Article  Google Scholar 

  • Enfield, D. B., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett., 28, 2077–2080, https://doi.org/10.1029/2000GL012745.

    Article  Google Scholar 

  • Gao, L. H., Z. W. Yan, and X. W. Quan, 2015: Observed and SST-forced multidecadal variability in global land surface air temperature. Climate Dyn., 44, 359–369, https://doi.org/10.1007/s00382-014-2121-9.

    Article  Google Scholar 

  • Gong, D. Y., S. W. Wang, and J. H. Zhu, 2001: East Asian winter monsoon and Arctic Oscillation. Geophys. Res. Lett., 28, 2073–2076, https://doi.org/10.1029/2000GL012311.

    Article  Google Scholar 

  • Gong, H. N., L. Wang, and W. Chen, 2019: Multidecadal changes in the influence of the Arctic Oscillation on the East Asian surface air temperature in boreal winter. Atmosphere, 10, 757, https://doi.org/10.3390/atmos10120757.

    Article  Google Scholar 

  • Ha, K.-J., K.-Y. Heo, S.-S. Lee, K.-S. Yun, and J.-G. Jhun, 2012: Variability in the East Asian monsoon: A review. Meteorological Applications, 19(2), 200–215, https://doi.org/10.1002/met.1320.

    Article  Google Scholar 

  • Harris, I., T. J. Osborn, P. Jones, and D. Lister, 2020: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data, 7, 109, https://doi.org/10.1038/s41597-020-0453-3.

    Article  Google Scholar 

  • Holton, J. R., and G. J. Hakim, 2013: An Introduction to Dynamic Meteorology. 5th ed. Academic Press, 552 pp, https://doi.org/10.1016/C2009-0-63394-8.

  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38(6), 1179–1196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    Article  Google Scholar 

  • Hu, Z. Z., and Z. H. Wu, 2004: The intensification and shift of the annual North Atlantic Oscillation in a global warming scenario simulation. Tellus A, 56, 112–124, https://doi.org/10.1111/j.1600-0870.2004.00050.x.

    Article  Google Scholar 

  • Hu, Z. Z., A. Kumar, B. H. Huang, Y. Xue, W. Q. Wang, and B. Jha, 2011: Persistent atmospheric and oceanic anomalies in the North Atlantic from Summer 2009 to Summer 2010. J. Climate, 24(22), 5812–5830, https://doi.org/10.1175/2011JCLI4213.1.

    Article  Google Scholar 

  • Hu, Z. Z., A. Kumar, B. Jha, W. Q. Wang, B. H. Huang, and B. Y. Huang, 2012: An analysis of warm pool and cold tongue El Niños: Air-sea coupling processes, global influences, and recent trends. Climate Dyn., 38, 2017–2035, https://doi.org/10.1007/s00382-011-1224-9.

    Article  Google Scholar 

  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269, 676–679, https://doi.org/10.1126/science.269.5224.676.

    Article  Google Scholar 

  • Hurrell, J. W., Y. Kushnir, G. Ottersen, and M. Visbeck, 2003: An overview of the North Atlantic oscillation. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, J. W. Hurrell et al., Eds., AGU, 114, 1–35, https://doi.org/10.1029/134GM01.

  • Jeong, J. H., and C. H. Ho, 2005: Changes in occurrence of cold surges over East Asia in association with Arctic Oscillation. Geophys. Res. Lett., 32, 85–93, https://doi.org/10.1029/2005GL023024.

    Article  Google Scholar 

  • Kim, H. J., and J. B. Ahn, 2012: Possible impact of the autumnal North Pacific SST and November AO on the East Asian winter temperature. J. Geophys. Res., 117, D12104, https://doi.org/10.1029/2012JD017527.

    Article  Google Scholar 

  • Kim, J.-W., S.-W. Yeh, and E.-C. Chang, 2014: Combined effect of El Niño-Southern Oscillation and Pacific decadal oscillation on the East Asian winter monsoon. Climate Dyn., 42(3–4), 957–971, https://doi.org/10.1007/s00382-013-1730-z.

    Article  Google Scholar 

  • Kim, J.-W., S.-I. An, S.-Y. Jun, H.-J. Park, and S. W. Yeh, 2017: ENSO and East Asian winter monsoon relationship modulation associated with the anomalous northwest Pacific anticyclone. Climate Dyn., 49(4), 1157–1179, https://doi.org/10.1007/s00382-016-3371-5.

    Article  Google Scholar 

  • Latif, M., C. Boning, J. Willebrand, A. Biastoch, J. Dengg, N. Keenlyside, U. Schweckendiek, and G. Madec, 2006: Is the thermohaline circulation changing? J. Clim., 19(18), 4631–4637.

    Article  Google Scholar 

  • Li, C. X., T. B. Zhao, and K. R. Ying, 2016b: Effects of anthropogenic aerosols on temperature changes in China during the twentieth century based on CMIP5 models. Theor. Appl. Climatol., 125, 529–540, https://doi.org/10.1007/s00704-015-1527-6.

    Article  Google Scholar 

  • Li, J. P., 2005a: Coupled air-sea oscillations and climate variations in China. Climate and Environmental Evolution in China (First Volume), D. H. Qin, Ed., China Meteorological Press, 324–333. (in Chinese)

  • Li, J. P., 2005b: Physical nature of the Arctic Oscillation and its relationship with East Asian atmospheric circulation. Air-Sea Interaction and its impacts on China Climate, Y. Q. Yu and W. Chen, Eds., China Meteorological Press, 169–176. (in Chinese)

  • Li, J. P., 2016: Impacts of annular modes on extreme climate events over the East Asian monsoon region. Dynamics and Predictability of Large-Scale, High-Impact Weather and Climate Events, J. P. Li et al., Eds., Cambridge University Press, 343–353, https://doi.org/10.1017/CBO9781107775541.028.

  • Li, J. P., and J. X. L. Wang, 2003: A new North Atlantic Oscillation index and its variability. Adv. Atmos. Sci., 20, 661–676, https://doi.org/10.1007/BF02915394.

    Article  Google Scholar 

  • Li, J. P., and Z. W. Wu., 2012: Importance of autumn Arctic sea ice to northern winter snowfall. Proceedings of the National Academy of Sciences of the United States of America, 109, E1898, https://doi.org/10.1073/pnas.1205075109.

    Google Scholar 

  • Li, J. P., C. Sun, and F.-F. Jin, 2013a: NAO implicated as a predictor of Northern Hemisphere mean temperature multi-decadal variability. Geophys. Res. Lett., 40, 5497–5502, https://doi.org/10.1002/2013GL057877.

    Article  Google Scholar 

  • Li, J. P., C. Sun, and R. Q. Ding, 2018b: A coupled decadal-scale air-sea interaction theory: The NAO-AMO-AMOC coupled mode and its impacts. Global Change and Future Earth-The Geoscience Perspective, T. Beer et al., Eds., Cambridge University Press, 131–143.

  • Li, J. P., R. Swinbank, R. Grotjahn, and H. Volkert, 2016a: Dynamics and Predictability of Large-Scale, High-Impact Weather and Climate Events. Cambridge University Press, 370pp.

  • Li, J. P., F. Zheng, C. Sun, J. Feng, and J. Wang, 2019a: Pathways of influence of the Northern Hemisphere mid-high latitudes on East Asian climate: A review. Adv. Atmos. Sci., 36, 902–921, https://doi.org/10.1007/s00376-019-8236-5.

    Article  Google Scholar 

  • Li, J. P., H. H. Hsu, W. C. Wang, K. J. Ha, T. M. Li, and A. Kitoh, 2018a: East Asian climate under global warming: Understanding and projection. Climate Dyn., 51, 3969–3972, https://doi.org/10.1007/s00382-018-4523-6.

    Article  Google Scholar 

  • Li, J. P., and Coauthors, 2013b: Progress in air-land-sea interactions in Asia and their role in global and Asian climate change. Chinese Journal of Atmospheric Sciences, 37, 518–538, https://doi.org/10.3878/j.issn.1006-9895.2012.12322. (in Chinese with English abstract)

    Google Scholar 

  • Li, S. L., and G. T. Bates, 2007: Influence of the Atlantic multi-decadal oscillation on the winter climate of East China. Adv. Atmos. Sci., 24, 126–135, https://doi.org/10.1007/s00376-007-0126-6.

    Article  Google Scholar 

  • Li, X. F., Z. Z. Hu, and B. H. Huang, 2020: Subannual to interannual variabilities of SST in the North Atlantic Ocean. J. Climate, 33(13), 5547–5564, https://doi.org/10.1175/JCLI-D-19-0556.1.

    Article  Google Scholar 

  • Li, X. X., Z. W. Wu, and Y. J. Li, 2019c: A link of China warming hiatus with the winter sea ice loss in Barents-Kara Seas. Climate Dyn., 53, 2625–2642, https://doi.org/10.1007/s00382-019-04645-z.

    Article  Google Scholar 

  • Li, Y. J., and J. P. Li, 2012: Propagation of planetary waves in the horizontal non-uniform basic flow. Chinese Journal of Geophysics, 55, 361–371, https://doi.org/10.6038/j.issn.0001-5733.2012.02.001. (in Chinese with English abstract)

    Google Scholar 

  • Li, Y. J., J. P. Li, F.-F. Jin, and S. Zhao, 2015: Interhemispheric propagation of stationary Rossby waves in a horizontally nonuniform background flow. J. Atmos. Sci., 72, 3233–3256, https://doi.org/10.1175/JAS-D-14-0239.1.

    Article  Google Scholar 

  • Li, Y. J., J. Feng, J. P. Li, and A. X. Hu, 2019b: Equatorial windows and barriers for stationary Rossby wave propagation. J. Climate, 32, 6117–6135, https://doi.org/10.1175/JCLI-D-18-0722.1.

    Article  Google Scholar 

  • Liu, T., J. P. Li, and F. Zheng, 2015: Influence of the boreal autumn southern annular mode on winter precipitation over land in the Northern Hemisphere. J. Climate, 28, 8825–8839, https://doi.org/10.1175/JCLI-D-14-00704.1.

    Article  Google Scholar 

  • Luo, D. H., Y. N. Chen, A. G. Dai, M. Mu, R. H. Zhang, and S. Ian, 2017: Winter Eurasian cooling linked with the Atlantic Multidecadal Oscillation. Environmental Research Letters, 12, 125002, https://doi.org/10.1088/1748-9326/aa8de8.

    Article  Google Scholar 

  • Luo, F. F., and S. L. Li, 2014: Joint statistical-dynamical approach to decadal prediction of East Asian surface air temperature. Science China Earth Sciences, 57, 3062–3072, https://doi.org/10.1007/s11430-014-4984-3.

    Article  Google Scholar 

  • Meehl, G. A., and H. Y. Teng, 2014: CMIP5 multi-model hind-casts for the mid-1970s shift and early 2000s hiatus and predictions for 2016–2035. Geophys. Res. Lett., 41, 1711–1716, https://doi.org/10.1002/2014GL059256.

    Article  Google Scholar 

  • Meehl, G. A., H. Y. Teng, and J. M. Arblaster, 2014: Climate model simulations of the observed early-2000s hiatus of global warming. Nature Climate Change, 4, 898–902, https://doi.org/10.1038/nclimate2357.

    Article  Google Scholar 

  • Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones, 2012: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. J. Geophys. Res.: Atmos., 117, D08101, https://doi.org/10.1029/2011jd017187.

    Article  Google Scholar 

  • Nigam, S., A. Sengupta, and A. Ruiz-Barradas, 2020: Atlantic-Pacific links in observed multidecadal SST variability: Is the Atlantic Multidecadal Oscillation’s phase reversal orchestrated by the Pacific Decadal Oscillation? J. Climate, 33, 5479–5505, https://doi.org/10.1175/JCLI-D-19-0880.1.

    Article  Google Scholar 

  • Pyper, B. J., and R. M. Peterman, 1998: Comparison of methods to account for autocorrelation in correlation analyses of fish data. Canadian Journal of Fisheries and Aquatic Sciences, 55, 2127–2140, https://doi.org/10.1139/cjfas-55-12-2710.

    Article  Google Scholar 

  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, https://doi.org/10.1029/2002JD002670.

    Article  Google Scholar 

  • Schlesinger, M. E., and N. Ramankutty, 1994: An oscillation in the global climate system of period 65–70 years. Nature, 367(6465), 723–726, https://doi.org/10.1038/367723a0.

    Article  Google Scholar 

  • Stolpe, M. B., I. Medhaug, J. Sedláček, and R. Knutti, 2018: Multi-decadal variability in global surface temperatures related to the Atlantic Meridional Overturning Circulation. J. Climate, 31(7), 2889–2906, https://doi.org/10.1175/JCLI-D-17-0444.1.

    Article  Google Scholar 

  • Sun, C., and J. P. Li, 2012: Analysis of anomalously low surface air temperature in the Northern Hemisphere during 2009/2010 winter. Climatic and Environmental Research, 17, 259–273, https://doi.org/10.3878/j.issn.1006-9585.2011.10070. (in Chinese with English abstract)

    Google Scholar 

  • Sun, C., J. P. Li, and F.-F. Jin, 2015: A delayed oscillator model for the quasi-periodic multidecadal variability of the NAO. Climate Dyn., 45, 2083–2099, https://doi.org/10.1007/s00382-014-2459-z.

    Article  Google Scholar 

  • Sun, C., J. P. Li, R. Q. Ding, and Z. Jin, 2017a: Cold season Africa-Asia multidecadal teleconnection pattern and its relation to the Atlantic multidecadal variability. Climate Dyn., 48, 3903–3918, https://doi.org/10.1007/s00382-016-3309-y.

    Article  Google Scholar 

  • Sun, C., J. P. Li, F. Kucharski, J. Q. Xue, and X. Li, 2019: Contrasting spatial structures of Atlantic Multidecadal Oscillation between observations and slab ocean model simulations. Climate Dyn., 52, 1395–1411, https://doi.org/10.1007/s00382-018-4201-8.

    Article  Google Scholar 

  • Sun, C., F. Kucharski, J. P. Li, F.-F. Jin, I.-S. Kang, and R. Q. Ding, 2017b: Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation. Nature Communications, 8, 15998, https://doi.org/10.1038/ncomms15998.

    Article  Google Scholar 

  • Sun, J. Q., S. Wu, and J. Ao, 2016: Role of the North Pacific sea surface temperature in the East Asian winter monsoon decadal variability. Climate Dyn., 46, 3793–3805, https://doi.org/10.1007/s00382-015-2805-9.

    Article  Google Scholar 

  • Trenberth, K. E., and D. A. Paolino, 1980: The Northern Hemisphere sea-level pressure data set: Trends, errors and discontinuities. Mon. Wea. Rev., 108(7), 855–872, https://doi.org/10.1175/1520-0493(1980)108<0855:TNHSLP>2.0.CO;2.

    Article  Google Scholar 

  • University of East Anglia Climatic Research Unit, I. C. Harris, and P. D. Jones, 2017: CRU TS4.01: Climatic Research Unit (CRU) Time-Series (TS) version 4.01 of high-resolution gridded data of month-by-month variation in climate (Jan. 1901–Dec. 2016). Centre for Environmental Data Analysis, https://doi.org/10.5285/58a8802721c94c66ae45c3baa4d814d0.

  • von Storch, H., and F. W. Zwiers, 2002: Statistical Analysis in Climate Research. Cambridge University Press, 162 pp.

  • Wallace, J. M., Y. Zhang, and L. Bajuk, 1996: Interpretation of interdecadal trends in Northern Hemisphere surface air temperature. J. Climate, 9(2), 249–259, https://doi.org/10.1175/1520-0442(1996)009<0249:IOITIN>2.0.CO;2.

    Article  Google Scholar 

  • Wang, B., Z. W. Wu, C. P. Chang, J. Liu, J. P. Li, and T. J. Zhou, 2010: Another Look at interannual-to-interdecadal variations of the East Asian winter monsoon: the northern and southern temperature modes. J. Climate, 23, 1495–1512, https://doi.org/10.1175/2009JCLI3243.1.

    Article  Google Scholar 

  • Wang, L., and W. Chen, 2010: Downward Arctic Oscillation signal associated with moderate weak stratospheric polar vortex and the cold December 2009. Geophys. Res. Lett., 37, L09707, https://doi.org/10.1029/2010GL042659.

    Article  Google Scholar 

  • Wang, L., and W. Chen, 2014a: The East Asian winter monsoon: Re-amplification in the mid-2000s. Chinese Science Bulletin, 59, 430–436, https://doi.org/10.1007/s11434-013-0029-0.

    Article  Google Scholar 

  • Wang, L., and W. Chen, 2014b: A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China. International Journal of Climatology, 34(6), 2059–2078, https://doi.org/10.1002/joc.3822.

    Article  Google Scholar 

  • Wang, X. F., J. P. Li, C. Sun, and T. Liu, 2017: NAO and its relationship with the Northern Hemisphere mean surface temperature in CMIP5 simulations. J. Geophys. Res.: Atmos., 122(8), 4202–4227, https://doi.org/10.1002/2016JD025979.

    Article  Google Scholar 

  • Wills, R. C. J., K. C. Armour, D. S. Battisti, and D. L. Hartmann, 2019: Ocean-atmosphere dynamical coupling fundamental to the Atlantic Multidecadal Oscillation. J. Climate., 32, 251–272, https://doi.org/10.1175/JCLI-D-18-0269.1.

    Article  Google Scholar 

  • Wu, B. Y., and J. Wang, 2002: Winter arctic oscillation, Siberian high and East Asian winter monsoon. Geophys. Res. Lett., 29(19), 1897, https://doi.org/10.1029/2002gl015373.

    Article  Google Scholar 

  • Wu, B. Y., J. Z. Su, and R. H. Zhang, 2011a: Effects of autumn-winter arctic sea ice on winter Siberian high. Chinese Science Bulletin, 56, 3220–3228, https://doi.org/10.1007/s11434-011-4696-4.

    Article  Google Scholar 

  • Wu, Z. W., J. Dou, and H. Lin, 2015: Potential influence of the November-December Southern Hemisphere annular mode on the East Asian winter precipitation: A new mechanism. Climate Dyn., 44, 1215–1226, https://doi.org/10.1007/s00382-014-2241-2.

    Article  Google Scholar 

  • Wu, Z. W., J. P. Li, B. Wang, and X. H. Liu, 2009: Can the Southern Hemisphere annular mode affect China winter monsoon? J. Geophys. Res., 114, D11107, https://doi.org/10.1029/2008JD011501.

    Article  Google Scholar 

  • Wu, Z. W., J. P. Li, Z. H. Jiang, and J. H. He, 2011b: Predictable climate dynamics of abnormal East Asian winter monsoon: Once-in-a-century snowstorms in 2007/2008 winter. Climate Dyn., 17, 1661–1669, https://doi.org/10.1007/s00382-010-0938-4.

    Article  Google Scholar 

  • Xie, T. J., J. P. Li, K. Q. Chen, Y. Z. Zhang, and C. Sun, 2021: Origin of Indian Ocean multidecadal climate variability: Role of the North Atlantic Oscillation. Climate Dyn., 56, 3277–3294, https://doi.org/10.1007/s00382-021-05643-w.

    Article  Google Scholar 

  • Xie, T. J., J. P. Li, C. Sun, R. Q. Ding, K. C. Wang, C. F. Zhao, and J. Feng, 2019: NAO implicated as a predictor of the surface air temperature multidecadal variability over East Asia. Climate Dyn., 53, 895–905, https://doi.org/10.1007/s00382-019-04624-4.

    Article  Google Scholar 

  • Xing, N., J. P. Li, and L. N. Wang, 2017: Multidecadal trends in large-scale annual mean SATa based on CMIP5 historical simulations and future projections. Engineering, 3, 136–143, https://doi.org/10.1016/J.ENG.2016.04.011.

    Article  Google Scholar 

  • Xu, Y. D., and Coauthors, 2020: Contribution of SST change to multidecadal global and continental surface air temperature trends between 1910 and 2013. Climate Dyn., 54, 1295–1313, https://doi.org/10.1007/s00382-019-05060-0.

    Article  Google Scholar 

  • Yin, S., J. Feng, and J. P. Li, 2013: Influences of the preceding winter Northern Hemisphere annular mode on the spring extreme low temperature events in the north of eastern China. Acta Meteorologica Sinica, 71(1), 96–108, https://doi.org/10.11676/qxxb2013.008.(inChinesewithEnglishabstract). (in Chinese with English abstract)

    Google Scholar 

  • Yu, L. L., Z. W. Wu, R. H. Zhang, and X. Yang, 2018: Partial least regression approach to forecast the East Asian winter monsoon using Eurasian snow cover and sea surface temperature. Climate Dyn., 51(11), 4573–4584, https://doi.org/10.1007/s00382-017-3757-z.

    Article  Google Scholar 

  • Yun, K.-S., Y.-W. Seo, K.-J. Ha, J.-Y. Lee, and Y. Kajikawa, 2014: Interdecadal changes in the Asian winter monsoon variability and its relationship with ENSO and AO. Asia-Pacific Journal of Atmospheric Sciences, 50(4), 531–540, https://doi.org/10.1007/s13143-014-0042-5.

    Article  Google Scholar 

  • Zhang, P., Z. W. Wu, and J. P. Li, 2019: Reexamining the relationship of La Niña and the East Asian winter monsoon. Climate Dyn., 53, 779–791, https://doi.org/10.1007/s00382-019-04613-7.

    Article  Google Scholar 

  • Zhang, P., Z. W. Wu, J. P. Li, and Z. N. Xiao, 2020: Seasonal prediction of the northern and southern temperature modes of the East Asian winter monsoon: The importance of the Arctic sea ice. Climate Dyn., 54, 3583–3597, https://doi.org/10.1007/s00382-020-05182-w.

    Article  Google Scholar 

  • Zhao, P., P. Jones, L. Cao, Z. Yan, S. Zha, Y. Zhu, Y. Yu, and G. Tang, 2014: Trend of surface air temperature in Eastern China and associated large-scale climate variability over the last 100 years. J. Climate, 27(12), 4693–4703, https://doi.org/10.1175/JCLI-D-13-00397.1.

    Article  Google Scholar 

  • Zhao, S., J. P. Li, and Y. J. Li, 2015: Dynamics of an interhemispheric teleconnection across the critical latitude through a southerly duct during boreal winter. J. Climate, 28, 7437–7456, https://doi.org/10.1175/JCLI-D-14-00425.1.

    Article  Google Scholar 

  • Zhao, S., J. P. Li, Y. J. Li, F.-F. Jin, and J. Y. Zheng, 2019: Interhemispheric influence of Indo-Pacific convection oscillation on Southern Hemisphere rainfall through southward propagation of Rossby waves. Climate Dyn., 52, 3203–3221, https://doi.org/10.1007/s00382-018-4324-y.

    Article  Google Scholar 

  • Zheng, F., J. P. Li, and T. Liu, 2014: Some advances in studies of the climatic impacts of the Southern Hemisphere annular mode. J. Meteor. Res., 28(5), 820–835, https://doi.org/10.1007/s13351-014-4079-2.

    Article  Google Scholar 

  • Zheng, F., J. P. Li, L. Wang, F. Xie, and X. F. Li, 2015: Cross-seasonal influence of the December–February Southern Hemisphere annular mode on March–May meridional circulation and precipitation. J. Climate, 28, 6859–6881, https://doi.org/10.1175/JCLI-D-14-00515.1.

    Article  Google Scholar 

  • Zheng, F., and Coauthors, 2021: The 2020/21 extremely cold winter in China influenced by the synergistic effect of La Niña and warm Arctic. Adv. Atmos. Sci., https://doi.org/10.1007/s00376-021-1033-y

  • Zuo, B., J. P. Li, C. Sun, and X. Zhou, 2019: A new statistical method for detecting trend turning. Theor. Appl. Climatol., 138, 201–213, https://doi.org/10.1007/s00704-019-02817-9.

    Article  Google Scholar 

  • Zuo, J. Q., H. L. Ren, and W. J. Li, 2015: Contrasting impacts of the Arctic Oscillation on surface air temperature anomalies in southern China between early and middle-to-late winter. J. Climate, 28(10), 4015–4026, https://doi.org/10.1175/JCLI-D-14-00687.1.

    Article  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the National Natural Science Foundation of China (NSFC) Project (Grant No. 41790474), Shandong Natural Science Foundation Project (Grant No. ZR2019ZD12), and Fundamental Research Funds for the Central Universities (Grant No. 201962009). The authors wish to thank the support from Center for High Performance Computing and System Simulation, Pilot National Laboratory for Marine Science and Technology (Qingdao), and all data providers.

Author information

Authors and Affiliations

  1. Frontiers Science Center for Deep Ocean Multispheres and Earth System-Key Laboratory of Physical Oceanography-Institute for Advanced Ocean Studies-Academy of the Future Ocean, Ocean University of China, Qingdao, 266100, China

    Jianping Li, Xinxin Tang & Hao Wang

  2. Laboratory for Ocean Dynamics and Climate, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China

    Jianping Li

  3. College of Global Change and Earth System Sciences, Beijing Normal University, Beijing, 100875, China

    Tiejun Xie, Cheng Sun & Juan Feng

  4. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China

    Fei Zheng

  5. State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, 100875, China

    Ruiqiang Ding

Authors
  1. Jianping Li
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Tiejun Xie
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Xinxin Tang
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Hao Wang
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Cheng Sun
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Juan Feng
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. Fei Zheng
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. Ruiqiang Ding
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Jianping Li.

Additional information

Article Highlights

• Winter EASAT displays a significant 60–80-year multidecadal variability and experienced a decreasing trend in the last two decades.

• The winter NAO leads the detrended winter EASAT by 12–18 years, and the relationship is unaffected by ENSO.

• The coupled oceanic-atmospheric bridge (COAB) mechanism of the NAO influences on winter EASAT multidecadal variability is proposed.

• An NAO-based model predicts the winter EASAT for 2020–34 keeps on fluctuating fall until ∼2025 and then turns towards sharp warming.

This paper is a contribution to the special issue on Extreme Cold Events from East Asia to North America in Winter 2020/21.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Xie, T., Tang, X. et al. Influence of the NAO on Wintertime Surface Air Temperature over East Asia: Multidecadal Variability and Decadal Prediction. Adv. Atmos. Sci. 39, 625–642 (2022). https://doi.org/10.1007/s00376-021-1075-1

Download citation

  • Received: 20 February 2021

  • Revised: 28 May 2021

  • Accepted: 16 June 2021

  • Published: 31 August 2021

  • Issue Date: April 2022

  • DOI: https://doi.org/10.1007/s00376-021-1075-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Key words

  • winter East Asian surface air temperature
  • North Atlantic Oscillation
  • Atlantic Multidecadal Oscillation
  • Africa-Asia multidecadal teleconnection pattern
  • coupled oceanic-atmospheric bridge
  • multidecadal variability

关键词

  • 冬季东亚地面气温
  • 北大西洋涛动
  • 大西洋多年代际振荡
  • 北非-东亚多年代际遥相关
  • 海气耦合桥
  • 多年代际变率
  • 年代际预测
Download PDF

Working on a manuscript?

Avoid the common mistakes

Associated Content

Part of a collection:

Extreme Cold Events from East Asia to North America in Winter 2020/21

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • Your US state privacy rights
  • How we use cookies
  • Your privacy choices/Manage cookies
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.