Skip to main content
Log in

An observational analysis of the oceanic and atmospheric structure of global-scale multi-decadal variability

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The aim of the present study was to identify multi-decadal variability (MDV) relative to the current centennial global warming trend in available observation data. The centennial global warming trend was first identified in the global mean surface temperature (STgm) data. The MDV was identified based on three sets of climate variables, including sea surface temperature (SST), ocean temperature from the surface to 700 m, and the NCEP and ERA40 reanalysis datasets, respectively. All variables were detrended and low-pass filtered. Through three independent EOF analyses of the filtered variables, all results consistently showed two dominant modes, with their respective temporal variability resembling the Pacific Decadal Oscillation/Inter-decadal Pacific Oscillation (PDO/IPO) and the Atlantic Multi-decadal Oscillation (AMO). The spatial structure of the PDO-like oscillation is characterized by an ENSO-like structure and hemispheric symmetric features. The structure associated with the AMO-like oscillation exhibits hemispheric asymmetric features with anomalous warm air over Eurasia and warm SST in the Atlantic and Pacific basin north of 10°S, and cold SST over the southern oceans. The Pacific and Atlantic MDV in upper-ocean temperature suggest that they are mutually linked.

We also found that the PDO-like and AMO-like oscillations are almost equally important in global-scale MDV by EOF analyses. In the period 1975–2005, the evolution of the two oscillations has given rise to strong temperature trends and has contributed almost half of the STgm warming. Hereon, in the next decade, the two oscillations are expected to slow down the global warming trends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alory, G., S. Wijffels, and G. Meyers, 2007: Observed temperature trends in the Indian Ocean over 1960–1999 and associated mechanisms. Geophys. Res. Lett., 34, L02606, doi: 10.1029/2006GL028044.

    Article  Google Scholar 

  • Andronova, N. G., and M. E. Schlesinger, 2000: Causes of global temperature changes during the 19th and 20th centuries. Geophys. Res. Lett., 27, 2137–2140.

    Article  Google Scholar 

  • Barlow, M., S. Nigam, and E. H. Berbery, 2001: ENSO, Pacific decadal variability, and U. S. summertime precipitation, drought, and stream flow. J. Climate, 14, 2105–2126.

    Article  Google Scholar 

  • Bentsen, M., H. Drange, T. Furevik, and T. Zhou, 2004: Simulated variability of the Atlantic Meridional Overturning circulation. Climate Dyn., 22, 701–720.

    Article  Google Scholar 

  • Booth, B. B. B., N. J. Dunstone, P. R. Halloran, T. Andrews, and N. Bellouin, 2012: Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature, 484(7393), 228–232, doi: 10.1038/nature10946.

    Article  Google Scholar 

  • Boyer, T. P., and Coauthors, 2009: World Ocean Database 2009, Chapter 1: Introduction. NOAA Atlas NESDIS 66, S. Levitus, Ed., U. S. Gov. Printing Office, Wash., D. C., 216pp.

    Google Scholar 

  • Chang, C. Y., J. C. H. Chiang, M. F. Wehner, A. R. Friedman, R. Ruedy, 2011: Sulfate aerosol control of tropical Atlantic climate over the twentieth century. J. Climate, 24, 2540–2555.

    Article  Google Scholar 

  • Chen, J. Y., A. D. Del Genio, B. E. Carlson, and M. G. Bosilovich, 2008: The spatiotemporal structure of twentieth-century climate variations in observations and reanalyses. Part I: Long-term trend. J. Climate, 21, 2611–2633.

    Article  Google Scholar 

  • Cheng, J., P. W. Guo, F. Y. Zhang, Z. Y. Liu, L. W. Liu, and W. X. Qiu, 2013: Reconstructing changes in Atlantic thermohaline circulation during the 20th century under two possible scenarios. Science China Earth Sciences, 56, 258–269, doi: 10.1007/s11430-012-4465-5.

    Article  Google Scholar 

  • Cubasch, U., and Coauthors, 2001: Projections of future climate change. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Houghton et al., Eds., Cambridge University Press, 562–565.

    Google Scholar 

  • Danabasoglu, G., 2008: On multidecadal variability of the Atlantic meridional overturning circulation in the Community Climate System Model version 3 (CCSM3). J. Climate, 21, 5524–5544.

    Article  Google Scholar 

  • Delworth, T., S. Manabe, and R. J. Stouffer, 1993: Interdecadal variations of the thermohaline circulation in a coupled ocean-atmosphere model. J. Climate, 6, 1993–2011.

    Article  Google Scholar 

  • Delworth, T. L., and M. E. Mann, 2000: Observed and simulated multidecadal variability in the Northern Hemisphere. Climate Dyn., 16, 661–676.

    Article  Google Scholar 

  • Deser, C., A. S. Phillips, and M. A. Alexander, 2010: Twentieth century tropical sea surface temperature trends revisited. Geophys. Res. Lett., 37, L10701, doi: 10.1029/2010GL043321.

    Article  Google Scholar 

  • Dong, B. W., and R. T. Sutton, 2005: Mechanism of interdecadal thermohaline circulation variability in a coupled ocean-atmosphere GCM. J. Climate, 18, 1117–1135.

    Article  Google Scholar 

  • d’Orgeville, M., and W. R. Peltier, 2007: On the Pacific Decadal Oscillation and the Atlantic Multidecadal Oscillation: Might they be related? Geophys. Res. Lett., 34, L23705, doi: 10.1029/2007GL031584.

    Google Scholar 

  • Enfield, D. B., A. M. Mestas-Nuñez, and P. J. Trimble, 2001: The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U. S. Geophys. Res. Lett., 28, 2077–2080.

    Article  Google Scholar 

  • Folland, C. K., D. E. Parker, A. W. Colman, and R. Washington, 1999: Large scale modes of ocean surface temperature since the late nineteenth century. Beyond El Niño: Decadal and Interdecadal Climate Variability. A. Navarra, Ed., Springer-Verlag, 73–102.

    Chapter  Google Scholar 

  • Hansen, J., R. Ruedy, J. Glascoe, and M. Sato, 1999: GISS analysis of surface temperature change. J. Geophys. Res., 104, 30 997–31 022.

    Article  Google Scholar 

  • Huang, N. E., and Z. H. Wu, 2008: A review on Hilbert-Huang transform: Method and its applications to geophysical studies. Rev. Geophys., 46, RG2006, doi: 10.1029/2007RG000228.

    Article  Google Scholar 

  • Huang, N. E., S. R. Long, and Z. Shen, 1996: The mechanism for frequency downshift in nonlinear wave evolution. Adv. Appl. Mech., 32, 59–117.

    Article  Google Scholar 

  • Huang, N. E., and Coauthors, 1998: The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proc. R. Soc. Lond. A, 454, 903–995.

    Article  Google Scholar 

  • Huang, N. E., Z. Shen, and S. R. Long, 1999: A new view of nonlinear water waves: The Hilbert spectrum. Annu. Rev. Fluid Mech., 31, 417–457, doi: 10.1146/annurev.fluid.31.1.417.

    Article  Google Scholar 

  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp.

  • Johnson, D. R., T. P. Boyer, H. E. Garcia, R. A. Locarnini, O. K. Baranova, and M. M. Zweng, 2009: World Ocean Database 2009 Documentation. NODC Internal Report 20, S. Levitus, Ed., NOAA Printing Office, Silver Spring, MD, 175 pp.

    Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437–471.

    Article  Google Scholar 

  • Kaufmann, R. K., H. Kauppi, M. L. Mann, and J. H. Stock, 2011: Reconciling anthropogenic climate change with observed temperature 1998–2008. Proc. Natl. Acad. Sci. USA, 108, 11790–11793, doi: 10.1073/pnas.1102467108.

    Article  Google Scholar 

  • Knight, J. R., R. J. Allan, C. K. Folland, M. Vellinga, and M. E. Mann, 2005: A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32, L20278, doi: 10.1029/2005GL024233.

    Article  Google Scholar 

  • Kushnir, Y., 1994: Interdecadal variations in North Atlantic sea surface temperature and associated atmospheric conditions. J. Climate, 7, 141–157.

    Article  Google Scholar 

  • Lamarque, J. F., and Coauthors, 2010: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmos. Chem. Phys., 10, 7017–7039.

    Article  Google Scholar 

  • Latif, M., 2001: Tropical Pacific/Atlantic Ocean interactions at multi-decadal time scales. Geophys. Res. Lett., 28, 539–542.

    Article  Google Scholar 

  • Latif, M., C. W. Böning, J. Willebrand, A. Biastoch, J. Dengg, N. Keenlyside, U. Schwekendieck, and G. Madec, 2006: Is the thermohaline circulation changing? J. Climate, 19, 4631–4637.

    Article  Google Scholar 

  • Levitus, S., J. Antonov, and T. Boyer, 2005: Warming of the world ocean, 1955–2003. Geophys. Res. Lett., 32, L02604, doi: 10.1029/2004GL021592.

    Google Scholar 

  • Liu, Z. Y., 2012: Dynamics of interdecadal climate variability: A historical perspective. J. Climate, 25, 1963–1995.

    Article  Google Scholar 

  • Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 1069–1079.

    Article  Google Scholar 

  • Meehl, G. A., and Coauthors, 2009: Decadal prediction: Can it be skillful? Bull. Amer. Meteor. Soc., 90, 1467–1485.

    Article  Google Scholar 

  • Nakamura, H., G. Lin, and T. Yamagata, 1997: Decadal climate variability in the North Pacific during the recent decades. Bull. Amer. Meteor. Soc., 78, 2215–2225.

    Article  Google Scholar 

  • Park, W., and M. Latif, 2010: Pacific and Atlantic multidecadal variability in the Kiel Climate Model. Geophys. Res. Lett., 37, L24702, doi: 10.1029/2010GL045560.

    Google Scholar 

  • Polyakov, I. V., V. A. Alexeev, U. S. Bhatt, E. I. Polyakova, and X. D. Zhang, 2010: North Atlantic warming: Patterns of long-term trend and multidecadal variability. Climate Dyn., 34, 439–457, doi: 10.1007/s00382-008-0522-3.

    Article  Google Scholar 

  • Power, S., T. Casey, C. Folland, A. Colman, and V. Mehta, 1999: Inter-decadal modulation of the impact of ENSO on Australia. Climate Dyn., 15, 319–324.

    Article  Google Scholar 

  • Qian, W. H., B. Lu, and C. W. Zhu, 2010: How would global-mean temperature change in the 21st century? Chin. Sci. Bull., 55, 1963–1967, doi: 10.1007/s11434-010-3258-5.

    Article  Google Scholar 

  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi: 10.1029/2002JD002670.

    Article  Google Scholar 

  • Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes, and W. Q. Wang, 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609–1625.

    Article  Google Scholar 

  • Schlesinger, M. E., and N. Ramankutty, 1994: An oscillation in the global climate system of period 65–70 years. Nature, 367, 723–726.

    Article  Google Scholar 

  • Schubert, S., and Coauthors, 2009: A U.S. CLIVAR project to assess and compare the responses of global climate models to drought-related SST forcing patterns: Overview and results. J. Climate, 22(19), 5251–5272.

    Article  Google Scholar 

  • Smith, T. M., and R. W. Reynolds, 2003: Extended reconstruction of global sea surface temperatures based on COADS Data (1854–1997). J. Climate, 16, 1495–1510.

    Article  Google Scholar 

  • Smith, T. M., and R. W. Reynolds, 2004: Improved extended reconstruction of SST (1854–1997). J. Climate, 17, 2466–2477.

    Article  Google Scholar 

  • Smith, T. M., and R. W. Reynolds, 2005: A global merged land-air-sea surface temperature reconstruction based on historical observations (1880–1997). J. Climate, 18, 2021–2036.

    Article  Google Scholar 

  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J. Climate., 21, 2283–2296.

    Article  Google Scholar 

  • Stenchikov, G., T. L. Delworth, V. Ramaswamy, R. J. Stouffer, A. Wittenberg, and F. R. Zeng, 2009: Volcanic signals in oceans. J. Geophys. Res., 114(D16), doi: 10.1029/2008JD011673.

    Google Scholar 

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131, 2961–3012.

    Article  Google Scholar 

  • Vecchi, G. A., B. J. Soden, A. T. Wittenberg, I. M. Held, A. Leetmaa, and M. J. Harrison, 2006: Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature, 441, 73–76.

    Article  Google Scholar 

  • Wang, S. W., T. J. Zhou, J. N. Cai, J. H. Zhu, Z. H. Xie, and D. Y. Gong, 2004: Abrupt climate change around 4 ka BP: Role of the thermohaline circulation as indicated by a GCM experiment. Adv. Atmos. Sci., 21(2), 291–295.

    Article  Google Scholar 

  • Wang, T., O. H. Otterå, Y. Q. Gao, and H. J. Wang, 2012: The response of the North Pacific Decadal Variability to strong tropical volcanic eruptions. Climate Dyn., 39, 2917–2936, doi: 10.1007/s00382-012-1373-5.

    Article  Google Scholar 

  • Wu, L. X., C. Li, C. X. Yang, and S.-P. Xie, 2008: Global teleconnections in response to a shutdown of the Atlantic meridional overturning circulation. J. Climate, 21, 3002–3019.

    Article  Google Scholar 

  • Wu, Z. H., N. E. Huang, J. M. Wallace, B. V. Smoliak, and X. Y. Chen, 2011: On the time-varying trend in global-mean surface temperature. Climate Dyn., 37, 759–773, doi: 10.1007/s00382-011-1128-8.

    Article  Google Scholar 

  • Zhang, R., and T. L. Delworth, 2005: Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J. Climate, 18, 1853–1860.

    Article  Google Scholar 

  • Zhang, R., and T. L. Delworth, 2007: Impact of the Atlantic multidecadal oscillation on North Pacific climate variability. Geophys. Res. Lett., 34, L23708, doi: 10.1029/2007GL031601.

    Google Scholar 

  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900–1993. J. Climate, 10, 1004–1020.

    Article  Google Scholar 

  • Zhou, T. J., 2003: Multi-spatial variability modes of the Atlantic Meridional Overturning Circulation. Chinese Sci. Bull., 48(Supp. II), 30–35.

    Google Scholar 

  • Zhou, T. J., X. H. Zhang, and S. W. Wang, 2000: The relationship between the thermohaline circulation and climate variability. Chinese Sci. Bull., 45(11), 1052–1056.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chung-Hsiung Sui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, P., Sui, CH. An observational analysis of the oceanic and atmospheric structure of global-scale multi-decadal variability. Adv. Atmos. Sci. 31, 316–330 (2014). https://doi.org/10.1007/s00376-013-2305-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-013-2305-y

Key words

Navigation