Skip to main content

Advertisement

Log in

Land use effects on microbial biomass C, β-glucosidase and β-glucosaminidase activities, and availability, storage, and age of organic C in soil

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Microbial biomass, β-glucosidase and β-glucosaminidase activities, and availability, storage, and age of soil organic C were investigated after 26 years of conversion from sugarcane (Saccharum officinarum) to forest (Eucaliptus robusta or Leucaena leucocephala), pasture (mixture of tropical grasses), and to vegetable cropping (agriculture) in a vertisol in Puerto Rico. Soil organic C (SOC) at 0–100 cm was similar under Leucaena (22.8 kg C/m2), Eucalyptus (18.6 kg C/m2), and pasture (17.2 kg C/m2), which were higher than under agriculture (13.0 kg C/m2). Soil organic N (SON) at 0–100 cm was similar under the land uses evaluated which ranged from 1.70 (under agriculture) to 2.28 kg N/m2 (under Leucaena forest). Microbial biomass C (MBC) and N (MBN) of the 0–15-cm soil layer could be ranked as: pasture > Leucaena = Eucalyptus > agriculture. The percentages of SOC and SON present as MBC and MBN, respectively, were nearly 1% in pasture and less than 0.50% in forest under Leucaena or Eucalyptus and agricultural soil. The activity of β-glucosidase of the 0–15-cm soil layer could be ranked as: Leucaena = Eucalyptus > pasture > agriculture; while β-glucosaminidase activity was ranked as: Eucalyptus > Leucaena = pasture > agriculture. The soil δ 13C changed from 1996 to 2006 in forest under Eucalyptus (18.7‰ to 21.2‰), but not under Leucaena (20.7‰ to 20.8‰). The soil under Leucaena preserved a greater proportion of old C compared to the forest under Eucalyptus; the former had an increased soil mineralizable C from the current vegetation inputs. The soil under agriculture had the lowest enzyme activities associated with C cycling, lowest percentage of SOC as MBC, highest percentage of SOC present as mineralizable C, and highest percentage of MBC present as mineralizable C compared to the other land uses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acosta-Martínez V, Cruz L, Sotomayor-Ramírez D, Perez-Alegría L (2007) Enzyme activities as affected by soil properties and land use in a tropical watershed. Appl Soil Ecol 35:35–45. doi:10.1016/j.apsoil.2006.05.012

    Article  Google Scholar 

  • Admunson RG, Trask J, Pendall E (1988) A rapid method of soil carbonate analysis using gas chromatography. Soil Sci Soc Am J 52:880–883

    Google Scholar 

  • Aide TM, Grau HR (2004) Globalization, migration and Latin American ecosystems. Science 35:1915–1916. doi:10.1126/science.1103179

    Article  Google Scholar 

  • Beare MH, Cabrera ML, Hendrix PF, Coleman DC (1994a) Aggregate-protected and unprotected organic matter pools in conventional-tillage and no-tillage soils. Soil Sci Soc Am J 58:787–795

    Google Scholar 

  • Beare MH, Hendrix PF, Coleman DC (1994b) Water-stable aggregates and organic matter fractions in conventional- and no-tillage soils. Soil Sci Soc Am J 58:777–786

    Google Scholar 

  • Binkley D, Ryan MG (1998) Net primary production and nutrient cycling in replicated stands of Eucalyptus saligna and Albizia falcataria. For Ecol Manage 112:79–85. doi:10.1016/S0378-1127(98) 00331-4

    Article  Google Scholar 

  • Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842. doi:10.1016/0038-0717(85) 90144-0

    Article  CAS  Google Scholar 

  • Cadisch G, Imhof H, Urquiaga S, Boddey RM, Giller KE (1996) Carbon turnover (13C) and nitrogen mineralization potential of particulate light soil organic matter after rainforest clearing. Soil Biol Biochem 28:1555–1567. doi:10.1016/S0038-0717(96) 00264-7

    Article  CAS  Google Scholar 

  • Cambardella CA, Elliot ET (1993) Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils. Soil Sci Soc Am J 57:1071–1076

    CAS  Google Scholar 

  • Cambardella CA, Elliot ET (1994) Carbon and nitrogen dynamics of soil organic matter fractions from cultivated grassland soils. Soil Sci Soc Am J 58:123–130

    Google Scholar 

  • Cerri CEP, Coleman K, Jenkinson DS, Bernoux B, Victoria R, Cerri CC (2003) Modeling soil carbon from forest and pasture ecosystems of Amazon, Brazil. Soil Sci Soc Am J 67:1879–1887

    CAS  Google Scholar 

  • Chan KY (1997) Consequences of changes in particulate organic carbon in vertisols under pasture and cropping. Soil Sci Soc Am J 61:1376–1382

    CAS  Google Scholar 

  • Chevallier T, Blanchart E, Albrecht A, Feller C (2004) The physical protection of soil organic carbon in aggregates: a mechanism of carbon storage in a vertisol under pasture and market gardening (Martinique, West Indies). Agric Ecosyst Environ 103:375–387. doi:10.1016/j.agee.2003.12.009

    Article  Google Scholar 

  • Cochran RL, Collins HP, Kennedy A, Bezdicek DF (2007) Soil carbon pools and fluxes after land conversion in a semiarid shrub-steppe ecosystem. Biol Fertil Soils 43:479–489. doi:10.1007/s00374-006-0126-1

    Article  CAS  Google Scholar 

  • Coulombe CE, Wilding LP, Dixon JB (1996) Overview of vertisols: characteristics and impacts on society. Adv Agron 57:289–375. doi:10.1016/S0065-2113(08) 60927-X

    Article  CAS  Google Scholar 

  • Derner JD, Schuman GE (2007) Carbon sequestration and rangelands: a synthesis of land management and precipitation effects. J Soil Water Conserv 62:77–85

    Google Scholar 

  • Desjardins T, Barros E, Sarrazin M, Girardin C, Mariotti A (2004) Effects of forest conversion to pasture on soil carbon content and dynamics in Brazilian Amazonia. Agric Ecosyst Environ 103:365–373. doi:10.1016/j.agee.2003.12.008

    Article  CAS  Google Scholar 

  • Doran JW, Parkin TB (1994) Defining and assessing soil quality. In: Doran JW, Coleman DC, Bezdicek DF, Stewart BA (eds) Defining soil quality for a sustainable environment. SSSA Special Publication 35. SSSA, ASA, Madison, WI, pp 3–21

    Google Scholar 

  • Drigo B, Kowalchuk GA, van Veen JA (2008) Climate change goes underground: effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere. Biol Fertil Soils 44:667–679. doi:10.1007/s00374-008-0277-3

    Article  Google Scholar 

  • Ekenler M, Tabatabai MA (2002) β-glucosaminidase activity of soils: effect of cropping systems and its relationship to nitrogen mineralization. Biol Fertil Soils 36:367–376. doi:10.1007/s00374-002-0541-x

    Article  CAS  Google Scholar 

  • Elliot ET (1986) Aggregate structure and carbon, nitrogen and phosphorus in native and cultivated soils. Soil Sci Soc Am J 50:627–633

    Google Scholar 

  • Eswaran H, Kimble J, Cook T, Beinroth FH (1992) Soil diversity in the tropics: implications for agricultural development. In: Lal R, Sánchez PA (eds) Myths and science of soils of the tropics. SSSA Publication 29. SSSA and ASA, Madison, WI, pp 1–16

    Google Scholar 

  • Feller C, Clermont-Dauphin C, Venkatapen C, Albrecht A, Arrouays D, Bernoux M, Blanchart E, Cabidoche YM, Cerri CEP, Chevallier T, Larré-Larrouy MC (2006) Soil organic carbon sequestration in the Caribbean. In: Lal R, Cerri CC, Bernoux M, Etchevers J, Cerri CE (eds) Carbon sequestration in soils of Latin America. Food Products Press, New York, pp 187–211

    Google Scholar 

  • Franzluebbers AJ, Arshad MA (1997) Soil microbial biomass and mineralizable carbon of water stable aggregates. Soil Sci Soc Am J 61:1090–1097

    CAS  Google Scholar 

  • Gajda AM, Doran JW, Kettler Wienhold BJ, TA Pikul JL, Cambardella CA (2001) Soil quality evaluations of alternative and conventional management systems in the Great Plains. In: Lal RJ, Kimble F, Follet RF (eds) Assessment methods for soil carbon. CRC, Boca Raton, FL, pp 381–400

    Google Scholar 

  • Garten CT Jr, Wullschleger SD (1999) Soil carbon inventories under a bioenergy crop (Switchgrass): measurement limitations. J Environ Qual 28:1359–1365

    CAS  Google Scholar 

  • Golchin A, Oades JM, Skjemstadt JO, Clarke P (1995) Structural and dynamic properties of soil organic matter as reflected by 13C natural abundance, pyrolysis mass spectrometry and soild-state 13C NMR spectroscopy in density fractions of an Oxisol under forest and pasture. Aust J Soil Res 33:59–76. doi:10.1071/SR9950059

    Article  Google Scholar 

  • Gregorich EG, Beare MH, McKim UF, Skjemstad JO (2006) Chemical and biological characteristics of physically uncomplexed organic matter. Soil Sci Soc Am J 70:9705–9985. doi:10.2136/sssaj2005.0116

    Article  CAS  Google Scholar 

  • Huntington TG (1995) Carbon sequestration in an aggrading forest ecosystem in the Southeastern USA. Soil Sci Soc Am J 59:1459–1467

    Article  CAS  Google Scholar 

  • Jastrow JD, Boutton TW, Miller RM (1996) Carbon dynamics of aggregate-associated organic matter estimated by carbon-13 natural abundance. Soil Sci Soc Am J 60:801–807

    CAS  Google Scholar 

  • Jenkinson DS (1988) Determination of microbial biomass carbon and nitrogen in soil. In: Wilson JR (ed) Advances in nitrogen cycling in agricultural ecosystems. Marcel Dekker, New York, pp 368–386

    Google Scholar 

  • Johnson MG, Kern JS (2003) Quantifying the organic carbon held in forested soils of the United States and Puerto Rico. In: Kimble JM, Lal R, Birdsey R, Heath LS (eds) The potential of US forest soils to sequester carbon and mitigate the greenhouse effect. CRC, Boca Ratón, FL, pp 47–71

    Google Scholar 

  • Keeney DR, Nelson DW (1982) Nitrogen-inorganic forms. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis: part 2, Chemical, microbiological properties. Second edition. Agronomy 9(2). ASA SSSA, Madison, WI, pp 643–698

    Google Scholar 

  • Lal R (2006) Soil carbon sequestration in Latin America. In: Lal R, Cerri CC, Bernoux M, Etchevers J, Cerri CE (eds) Carbon sequestration in soils of Latin America. Food Products, New York, pp 49–64

    Google Scholar 

  • Lal R, Follet RF, Stewart BA, Kimble JM (2007) Soil carbon sequestration to mitigate climate change and advance food security. Soil Sci 172:943–956. doi:10.1097/ss.0b013e31815cc498

    Article  CAS  Google Scholar 

  • Lugo AE, Sanchez A, Brown S (1992) Land use and organic carbon content of some subtropical soils. Plant Soil 96:185–196. doi:10.1007/BF02374763

    Article  Google Scholar 

  • Martens DA, Loeffelmann KL (2002) Improved accounting of carbohydrate carbon from plants and soils and their influence on soil structure. Biol Fertil Soils 13:65–73. doi:10.1007/BF00337337

    Article  Google Scholar 

  • Martens DA, Reedy TE, Lewis DT (2003) Soil organic carbon content and composition of 130-year crop, pasture and forest land-use managements. Glob Change Biol 10:65–78. doi:10.1046/j.1529-8817.2003.00722.x

    Article  Google Scholar 

  • Martin A, Mariotti A, Balesdent J, Lavelle P, Vuattoux R (1990) Estimate of organic matter turnover rate in a savanna soil by 13C natural abundance measurements. Soil Biol Biochem 22:517–523. doi:10.1016/0038-0717(90) 90188-6

    Article  Google Scholar 

  • Mendez MJ, Oro LD, Panebianco JE, Colazo JC, Buschiazzo DE (2006) Organic carbon and nitrogen in soils of semiarid Argentina. J Soil Water Conserv 61:230–235

    Google Scholar 

  • Mendham DS, Sankaran KV, O’Connel AM, Grove TS (2002) Eucalyptus globulus harvest residue management effects on soil carbon and microbial biomass at 1 and 5 years after plantation establishment. Soil Biol Biochem 34:1903–1912. doi:10.1016/S0038-0717(02) 00205-5

    Article  CAS  Google Scholar 

  • Parham JA, Deng SP (2000) Detection, quantification and characterization of β-glucosaminidase activity in soil. Soil Biol Biochem 32:1183–1190. doi:10.1016/S0038-0717(00) 00034-1

    Article  CAS  Google Scholar 

  • Parrota JA (1999) Productivity, nutrient cycling, and succession in single- and mixed-species plantations of Casuarina equisetifoliar, Eucalyptus robusta, and Leucaena leucosephala in Puerto Rico. For Ecol Manage 124:45–77

    Article  Google Scholar 

  • Resh SC, Binkley D, Parrotta JA (2002) Greater soil carbon sequestration under nitrogen-fixing trees compared to Eucalyptus species. Ecosystems (NY) 5:217–231. doi:10.1007/s10021-001-0067-3

    Article  CAS  Google Scholar 

  • Rice CW, García F (1994) Biologically active pools of carbon and nitrogen in tallgrass prairie soil. In: Doran JW, Coleman DC, Bezdicek DF, Stewart BA (eds) Defining soil quality for a sustainable environment. SSSA Special Publication 35. SSSA, ASA, Madison, WI, pp 201–208

    Google Scholar 

  • Silver WL, Ostertag R, Lugo AE (2000) The potential for carbon sequestration through reforestation of abandoned tropical agricultural and pasture lands. Restor Ecol 8:394–407. doi:10.1046/j.1526-100x.2000.80054.x

    Article  Google Scholar 

  • Six J, Elliot ET, Paustian K, Doran JW (1998) Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Sci Soc Am J 62:1367–1377

    CAS  Google Scholar 

  • Six J, Paustian K, Elliot ET, Combrink C (2000) Soil structure and organic matter: I. Distribution of aggregate-size classes and aggregate associated carbon. Soil Sci Soc Am J 64:681–689

    CAS  Google Scholar 

  • Snyder VA, Vázquez MA (2004) Structure. In: Hillel D (ed) Encyclopedia of soils in the environment. Academic, London, pp 54–68

    Google Scholar 

  • Sotomayor-Ramírez D, Lugo-Ospina A, Rámos-Santana R (2004) Vegetation influence on soil quality in a highly degrated tropical soil. J Agric Univ PR 88:11–26

    Google Scholar 

  • Sotomayor-Ramírez D, Espinoza Y, Rámos-Santana R (2006) Short-term tillage practices on soil organic matter pools in a tropical Ultisol. Aust J Soil Res 44:687–693. doi:10.1071/SR06049

    Article  Google Scholar 

  • Sperrow M (2007) The marginal costs of carbon sequestration: Implications of one greenhouse gas mitigation activity. J Soil Water Conserv 62:367–374

    Google Scholar 

  • Tabatabai MA (1994) Soil enzymes. In: Weaver RW, Angel GS, Bottomley PS (eds) Methods of soil analysis: chemical and microbiological properties, Part 2. SSSA Book Series 5. SSSA, Madison, WI, pp 797–798

    Google Scholar 

  • Tisdall JM, Oades JM (1982) Organic matter and water-stable aggregates in soils. J Soil Sci 33:141–163. doi:10.1111/j.1365-2389.1982.tb01755.x

    Article  CAS  Google Scholar 

  • USDA-SCS (United States Department of Agriculture Soil Conservation Service) (1965) Soil Survey, Lajas Valley Area, Puerto Rico. USDA-SCS, Series 1961, no. 23

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring microbial biomass C. Soil Biol Biochem 19:703–707. doi:10.1016/0038-0717(87) 90052-6

    Article  CAS  Google Scholar 

  • Vicente-Chandler J, Abruña F, Caro-Costas R, Silva S (1983) Producción y utilización intensiva de las forrajeras en Puerto Rico (in Spanish). University of Puerto Rico, Agricultural Experiment Station Bulletin 271. ISSN 0163-8238, pp 226

  • Wu J, Joergensen RG, Pommerening B, Chaussod R, Brookes PC (1990) Measurement of soil microbial biomass C by fumigation extraction- An automated procedure. Soil Biol Biochem 22:1167–1169. doi:10.1016/0038-0717(90) 90046-3

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We appreciate the assistance of Mr. Samuel Ríos (Soil Scientist, USDA-NRCS), Ms. Jaqueline Vega (undergraduate student, UPRM), Dr. Jose Luis Gil (Researcher, INIA-CENIAP), Dr. R. Macchiavelli (Professor UPRM), and Dr. L. Pérez-Alegría (Professor, UPRM). This project was supported by the ATLANTEA grant (Intercambio Académico del Caribe).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Sotomayor-Ramírez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sotomayor-Ramírez, D., Espinoza, Y. & Acosta-Martínez, V. Land use effects on microbial biomass C, β-glucosidase and β-glucosaminidase activities, and availability, storage, and age of organic C in soil. Biol Fertil Soils 45, 487–497 (2009). https://doi.org/10.1007/s00374-009-0359-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-009-0359-x

Keywords

Navigation