Skip to main content

Advertisement

Log in

Climate change goes underground: effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere

  • Review
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

General concern about climate change has led to growing interest in the responses of terrestrial ecosystems to elevated concentrations of CO2 in the atmosphere. Experimentation during the last two to three decades using a large variety of approaches has provided sufficient information to conclude that enrichment of atmospheric CO2 may have severe impact on terrestrial ecosystems. This impact is mainly due to the changes in the organic C dynamics as a result of the effects of elevated CO2 on the primary source of organic C in soil, i.e., plant photosynthesis. As the majority of life in soil is heterotrophic and dependent on the input of plant-derived organic C, the activity and functioning of soil organisms will greatly be influenced by changes in the atmospheric CO2 concentration. In this review, we examine the current state of the art with respect to effects of elevated atmospheric CO2 on soil microbial communities, with a focus on microbial community structure. On the basis of the existing information, we conclude that the main effects of elevated atmospheric CO2 on soil microbiota occur via plant metabolism and root secretion, especially in C3 plants, thereby directly affecting the mycorrhizal, bacterial, and fungal communities in the close vicinity of the root. There is little or no direct effect on the microbial community of the bulk soil. In particular, we have explored the impact of these changes on rhizosphere interactions and ecosystem processes, including food web interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372

    PubMed  Google Scholar 

  • Alberton O, Kuyper TW, Gorissen A (2007) Competition for nitrogen between Pinus sylvestris and ectomycorrhizal fungi generates potential for negative feedback under elevated CO2. Plant Soil 296:159–172

    CAS  Google Scholar 

  • Allen MF, Klironomos JN, Treseder KK, Oechel WC (2005) Responses of soil biota to elevated CO2 in a chaparral ecosystem. Ecol Appl 15:1701–1711

    Google Scholar 

  • Arnone JA III, Gordon JC (1990) Effect of nodulation, nitrogen fixation and CO2 enrichment on the physiology, growth and dry mass allocation of seedlings of Alnus rubra Bong. New Phytol 116:55–66

    CAS  Google Scholar 

  • Berntson GM, Bazzaz FA (1997) Nitrogen cycling in microcosms of yellow birch exposed to elevated CO2: simultaneous positive and negative below-ground feedbacks. Glob Chang Biol 3:247–258

    Google Scholar 

  • Billes G, Rouhier H, Bottner P (1993) Modifications of the carbon and nitrogen allocations in the plant (Triticum-Aestivum L) soil system in response to increased atmospheric CO2 concentration. Plant Soil 157:215–225

    CAS  Google Scholar 

  • Bruce KD, Jones TH, Bezemer TM, Thompson LJ, Ritchie DA (2000) The effect of elevated atmospheric carbon dioxide levels on soil bacterial communities. Glob Chang Biol 6:427–434

    Google Scholar 

  • Brussaard L, Behan-Pelletier VM, Bignell DE, Brown VK, Didden W, Folgarait P, Fragroso C, Freckman DW, Gupta V, Hattori T, Hawksworth DL, Klopatek C, Lavelle P, Malloch DW, Rusek J, Soderstrom B, Tiedje JM, Virginia RA (1997) Biodiversity and ecosystem functioning in soil. Ambio 26:563–570

    Google Scholar 

  • Carney KM, Hungate BA, Drake BG, Megonigal JP (2007) Altered soil microbial community at elevated CO2 leads to loss of soil carbon. Pro Natl Acad Sci U S A 104:4990–4995

    CAS  Google Scholar 

  • Cheng WX, Johnson DW (1998) Elevated CO2, rhizosphere processes, and soil organic matter decomposition. Plant Soil 202:167–174

    CAS  Google Scholar 

  • Cheng WX, Gershenson A (2007) Carbon fluxes in the rhizosphere. In: Cardon ZG, Whitbeck JL (eds) The rhizosphere: an ecological perspective. Elsevier Academic Press, London, UK, pp 31–56

    Google Scholar 

  • Cheng WX, Sims DA, Luo YQ, Coleman JS, Johnson DW (2000) Photosynthesis, respiration, and net primary production of sunflower stands in ambient and elevated atmospheric CO2 concentrations: an invariant NPP:GPP ratio? Glob Chang Biol 6:931–941

    Google Scholar 

  • Chung HG, Zak DR, Lilleskov EA (2006) Fungal community composition and metabolism under elevated CO2 and O-3. Oecologia 147:143–154

    PubMed  Google Scholar 

  • Cotrufo MF, Gorissen A (1997) Elevated CO2 enhances below-ground C allocation in three perennial grass species at different levels of N availability. New Phytol 137:421–431

    CAS  Google Scholar 

  • Cotrufo MF, Ineson P, Scott A (1998) Elevated CO2 reduces the nitrogen concentration of plant tissues. Glob Chang Biol 4:43–54

    Google Scholar 

  • Coûteaux MM, Kurz C, Bottner P, Raschi A (1999) Influence of the increased atmospheric CO2 concentration on quality of plant material and litter decomposition. Tree Physiol 19:301–311

    PubMed  Google Scholar 

  • Curtis PS (1996) A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide. Plant Cell Environ 19:127–137

    Google Scholar 

  • Curtis PS, Wang XZ (1998) A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia 113:299–313

    Google Scholar 

  • Curtis PS, Balduman LM, Drake BG, Whigham DF (1990) Elevated atmospheric CO2 effects on belowground processes in C-3 and C-4 estuarine marsh communities. Ecology 71:2001–2006

    Google Scholar 

  • Curtis TP, Sloan WT, Scannell JW (2002) Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci U S A 99:10494–10499

    PubMed  CAS  Google Scholar 

  • Diaz S, Grime JP, Harris J, McPherson E (1993) Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide. Nature 364:616–617

    CAS  Google Scholar 

  • Denef K, Bubenheim H, Lenhart K, Vermeulen J, Van Cleemput O, Boeckx P, Muller C (2007) Community shifts and carbon translocation within metabolically-active rhizosphere microorganisms in grasslands under elevated CO2. Biogeosciences 4:769–779

    Article  CAS  Google Scholar 

  • De Ruiter P, Moore J, Zwart K, Bouwman L, Hassink J, Bloem J, De Vos J, Marinissen J, Didden W, Lebbink G, Brussaard L (1993) Simulation of nitrogen mineralization in the belowground food webs of two winter-wheat fields. J. Appl Ecol 30:95–106

    Google Scholar 

  • Drigo B, Kowalchuk GA, Yergeau E, Bezemer TM, Boschker HTS, Van Veen JA (2007) Impact of elevated carbon dioxide on the rhizosphere communities of Carex arenaria and Festuca rubra. Glob Chang Biol 13:2396–2410

    Google Scholar 

  • Ebersberger D, Wermbter N, Niklaus P, Kandeler E (2004) Effects of long term CO2 enrichment on microbial community structure in calcareous grassland. Plant Soil 264:313–323

    CAS  Google Scholar 

  • Elhottova D, Triska J, Santruckova H, Kveton J, Santrucek J, Simkova M (1997) Rhizosphere microflora of winter wheat plants cultivated under elevated CO2. Plant Soil 197:51–259

    Google Scholar 

  • Fitter AH, Heinemeyer A, Staddon PL (2000) The impact of elevated CO2 and global climate change on arbuscular mycorrhizas: a mycocentric approach. New Phytol 147:179–187

    CAS  Google Scholar 

  • Fitter AH, Heinemeyer A, Husband R, Olsen E, Ridgway KP, Staddon PL (2004) Global environmental change and the biology of arbuscular mycorrhizas: gaps and challenges. Can J Bot 82:1133–1139

    Google Scholar 

  • Fransson PMA, Taylor AFS, Finlay RD (2001) Elevated atmospheric CO2 alters root symbiont community structure in forest trees. New Phytol 152:431–442

    CAS  Google Scholar 

  • Fromin N, Tarnawski S, Roussel-Delif L, Hamelin J, Baggs EM, Aragno M (2005) Nitrogen fertiliser rate affects the frequency of nitrate-dissimilating Pseudomonas spp. in the rhizosphere of Lolium perenne grown under elevated pCO2 (Swiss FACE). Soil Biol Biochem 37:1962–1965

    CAS  Google Scholar 

  • Gamper H, Peter M, Jansa J, Luscher A, Hartwig UA, Leuchtmann A (2004) Arbuscular mycorrhizal fungi benefit from 7 years of free air CO2 enrichment in well-fertilized grass and legume monocultures. Glob Chang Biol 10:189–199

    Google Scholar 

  • Gamper H, Hartwig UA, Leuchtmann A (2005) Mycorrhizas improve nitrogen nutrition of Trifolium repens after 8 yr of selection under elevated atmospheric CO2 partial pressure. New Phytol 167:531–542

    PubMed  CAS  Google Scholar 

  • Gebauer RLE, Strain BR, Reynolds JF (1997) The effect of elevated CO2 and N availability on tissue concentrations and whole plant pools of carbon-based secondary compounds in loblolly pine (Pinus taeda). Oecologia 113:29–36

    Google Scholar 

  • Griffiths BS, Ritz K, Ebblewhite N, Paterson E (1998) Ryegrass rhizosphere microbial community structure under elevated C dioxide concentrations, with observations on wheat rhizosphere. Soil Biol Biochem 30:315–321

    CAS  Google Scholar 

  • Hodge A (1996) Impact of elevated CO2 on mycorrhizal associations and implications for plant growth. Biol Fertil Soils 23:388–398

    CAS  Google Scholar 

  • Hodge A, Paterson E, Grayston SJ, Campbell CD, Ord BG, Killham K (1998) Characterisation and microbial utilization of exudate material from the rhizosphere of Lolium perenne grown under CO2 enrichment. Soil Biol Biochem 30:1033

    CAS  Google Scholar 

  • Hoeksema JD, Lussenhop J, Teeri JA (2000) Soil nematodes indicate food web responses to elevated atmospheric CO2. Pedobiologia 44:725–735

    Google Scholar 

  • Hu S, Chapin FS, Firestone MK, Field CB, Chiariello NR (2001) Nitrogen limitation of microbial decomposition in a grassland under elevated CO2. Nature 409:188–191

    PubMed  CAS  Google Scholar 

  • Hu SJ, Firestone MK, Chapin FS (1999) Soil microbial feedbacks to atmospheric CO2 enrichment. TREE 14:433–437

    PubMed  Google Scholar 

  • Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774

    PubMed  CAS  Google Scholar 

  • Hughes JB, Bohannan BJM (2004) Application of ecological diversity statistics in microbial ecology. In: Kowalchuk GA, de Bruijn FJ, Head IM, Akkermans AD, van Elsas JD (eds) Molecular microbial ecology manual, 2nd edition. Kluwer, Dordrecht, The Netherlands, pp 1321–1344

    Google Scholar 

  • Hungate BA, Holland EA, Jackson RB, Chapin FS, Mooney HA, Field CB (1997) The fate of carbon in grasslands under carbon dioxide enrichment. Nature 388:576–579

    CAS  Google Scholar 

  • Hungate BA, Jaeger CH, Gamara G, Chapin FS, Field CB (2000) Soil microbiota in two annual grasslands: responses to elevated atmospheric CO2. Oecologia 124:589–598

    Google Scholar 

  • Hungate BA, Dukes JS, Shaw MR, Luo Y, Field CB (2003) Atmospheric science: nitrogen and climate change. Science 302:1512–1513

    PubMed  CAS  Google Scholar 

  • Insam H, Baath E, Berreck M, Frostegard A, Gerzabek MH, Kraft A, Schinner F, Schweiger P, Tschuggnall G (1999) Responses of the soil microbiota to elevated CO2 in an artificial tropical ecosystem. J. Microbiol Methods 36:45

    PubMed  CAS  Google Scholar 

  • IPCC Climate Change (2007) Synthesis Report. Summary for Policymakers. http://www.ipcc.ch. November 2007

  • Jackson RB, Mooney HA, Schulze ED (1997) A global budget for fine root biomass, surface area, and nutrient contents. Proc Natl Acad Sci U S A 94:362–7366

    Article  Google Scholar 

  • Janus L, Angeloni N, McCormack J, Rier S, Tuchman N, Kelly J (2005) Elevated atmospheric CO2 alters soil microbial communities associated with trembling aspen (Populus tremuloides) roots. Microb Ecol 50:102–109

    PubMed  Google Scholar 

  • Johnson NC, Gehring CA (2007) Mycorrhizas: symbiotic mediators of rhizosphere and ecosystem processes. In: Cardon ZG, Whitbeck JL (eds) The rhizosphere: an ecological perspective. Elsevier Academic Press, London, UK, pp 31–56

    Google Scholar 

  • Johnson NC, Wolf J, Koch GW (2003) Interactions among mycorrhizae, atmospheric CO2 and soil N impact plant community composition. Ecol Lett 6:532–540

    Google Scholar 

  • Jones TH, Thompson TJ, Lawton JH, Bezemer TM, Bardgett RD, Blackburn TM, Bruce KD, Cannon PF, Hall GS, Hartley SE, Howson G, Jones CG, Kampichler C, Kandeler E, Ritchie DA (1998) Impacts of rising atmospheric carbon dioxide on model terrestrial ecosystems. Science 280:441–443

    PubMed  CAS  Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480

    CAS  Google Scholar 

  • Jongen M, Jones MB, Hebeisen T, Blum H, Hendrey G (1995) The effects of elevated CO2 concentrations on the root growth of Lolium perenne and Trifolium repens grown in a FACE* system. Glob Chang Biol 1:361–371

    Google Scholar 

  • Jossi M, Fromin N, Tarnawski S, Kohler F, Gillet F, Aragno M, Hamelin J (2006) How elevated pCO2 modifies total and metabolically active bacterial communities in the rhizosphere of two perennial grasses grown under field conditions. FEMS Microbiol Ecol 55:339–350

    PubMed  CAS  Google Scholar 

  • Kandeler E, Tscherko D, Bardgert RD, Hobbs PJ, Kampichler C, Jones TH (1998) The response of soil microorganisms and roots to elevated CO2 and temperature in a terrestrial model ecosystem. Plant Soil 202:251–262

    CAS  Google Scholar 

  • Klamer M, Roberts MS, Levine LH, Drake BG, Garland JL (2002) Influence of elevated CO2 on the fungal community in a coastal scrub oak forest soil investigated with terminal-restriction fragment length polymorphism analysis. Appl Environ Microbiol 68:4370–4376

    PubMed  CAS  Google Scholar 

  • Klironomos JN, Rillig MC, Allen MF (1996) Below-ground microbial and microfaunal responses to Artemisia tridentata grown under elevated atmospheric CO2. Funct Ecol 10:527–534

    Google Scholar 

  • Klironomos JN, Rillig MC, Allen MF, Zak DR, Kubiske M, Pregitzer KS (1997) Soil fungal-arthropod responses to Populus tremuloides grown under enriched atmospheric CO2 under field conditions. Glob Chang Biol 3:473–478

    Google Scholar 

  • Klironomos JN, Allen M, Rillig MC, Piotrowski J, Makvandi-Nejad S, Wolfe BE, Powell JR (2005) Abrupt rise in atmospheric CO2 overestimates community response in a model plant–soil system. Nature 433:621–624

    PubMed  CAS  Google Scholar 

  • King JS, Thomas RB, Strain BR (1997) Morphology and tissue quality of seedling root systems of Pinus taeda and Pinus ponderosa as affected by varying CO2, temperature, and nitrogen. Plant Soil 195:107–119

    CAS  Google Scholar 

  • King JS, Hanson PJ, Bernhardt E, DeAngelis P, Norby RJ, Pregitzer KS (2004) A multiyear synthesis of soil respiration responses to elevated atmospheric CO2 from four forest FACE experiments. Glob Chang Biol 10:1027–1042

    Google Scholar 

  • Körner C (2000) Biosphere responses to CO2 enrichment. Ecol Appl 10:1590–1619

    Google Scholar 

  • Körner C, Arnone JA (1992) Responses to elevated carbon-dioxide in artificial tropical ecosystems. Science 257:1672–1675

    PubMed  Google Scholar 

  • Kreuzer-Martin HW (2007) Stable isotope probing: linking functional activity to specific members of microbial communities. Soil Sci Soc Am J 71:611–619

    CAS  Google Scholar 

  • Kuikman PJ, Lekkerkerk LJA, Van Veen JA (1991) Carbon dynamics of a soil planted with wheat under elevated CO2 concentration. In: Wilson WS (ed) Advances in soil organic matter research: the impact on agriculture and the environment, vol Special Publication 90. The Royal Society of Chemistry, Cambridge, UK, pp 267–274

    Google Scholar 

  • Lekkerkerk LJA, Van de Geijn SC, Van Veen JA (1990) Effects of elevated atmospheric CO2-levels on the carbon economy of a soil planted with wheat. In: Bowman AF (ed) Soils and the greenhouse effect. Wiley, Chichester, pp 423–429

    Google Scholar 

  • Lipson DA, Wilson RF, Oechel WC (2005) Effects of elevated atmospheric CO2 on soil microbial biomass, activity, and diversity in a chaparral ecosystem. Appl Environ Microbiol 71:8573–8580

    PubMed  CAS  Google Scholar 

  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants face the future. Annu Rev Plant Biol 55:591–628

    PubMed  CAS  Google Scholar 

  • Luo Y, Su B, Currie W, Dukes J, Finzi A, Hartwig U, Hungate B, McMurtrie R, Oren R, Parton W, Pataki D, Shaw M, Zak D, Field C (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54:731–739

    Google Scholar 

  • Lussenhop J, Treonis A, Curtis PS, Teeri JA, Vogel CS (1998) Response of soil biota to elevated atmospheric CO2 in poplar model systems. Oecologia 113:247–251

    Google Scholar 

  • Marilley L, Hartwig UA, Aragno M (1999) Influence of an elevated atmospheric CO2 content on soil and rhizosphere bacterial communities beneath Lolium perenne and Trifolium repens under field conditions. Microb Ecol 38:39–49

    PubMed  CAS  Google Scholar 

  • Mayr C, Miller M, Insam H (1999) Elevated CO2 alters community-level physiological profiles and enzyme activities in alpine grassland. J Microbiol Methods 36:35–43

    PubMed  CAS  Google Scholar 

  • Montealegre CM, Van Kessel C, Blumenthal JM, Hur H-G, Hartwig UA, Sadowsky MJ (2000) Elevated atmospheric CO2 alters microbial population structure in a pasture ecosystem. Glob Chang Biol 6:475–482

    Google Scholar 

  • Moore JC, Hunt HW (1998) Resource compartmentation and the stability of real ecosystems. Nature 333:261–263

    Google Scholar 

  • Niklaus PA, Glockler E, Siegwolf R, Korner C (2001) Carbon allocation in calcareous grassland under elevated CO2: a combined 13C-pulse-labelling/soil physical fractionation study. Funct Ecol 15:43–50

    Google Scholar 

  • Niklaus PA, Alphei J, Ebersberger D, Kamphikler C, Kandler E, Tscherko D (2003) Six years of in situ CO2 enrichment evoke changes in soil structure and soil biota of nutrient-poor grassland. Glob Chang Biol 9:585–600

    Google Scholar 

  • Neher DA, Weicht TR, Moorhead DL, Sinsabaugh RL (2004) Elevated CO2 alters functional attributes of nematode communities in forest soils. Funct Ecol 18:584–591

    Google Scholar 

  • Norby RJ (1994) Issues and perspectives for investigating root responses to elevated atmospheric carbon-dioxide. Plant Soil 165:9–20

    CAS  Google Scholar 

  • Olsrud M, Melillo JM, Christensen TR, Michelsen A, Wallander H, Olsson PA (2004) Response of ericoid mycorrhizal colonization and functioning to global change factors. New Phytol 162:459–469

    Google Scholar 

  • Owen AG, Jones D (2001) Competition for amino acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant N acquisition. Soil Biol Biochem 33:651–657

    CAS  Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740

    PubMed  CAS  Google Scholar 

  • Parrent JL, Morris WF, Vilgalys R (2006) CO2-enrichment and nutrient availability alter ectomycorrhizal fungal communities. Ecology 87:2278–2287

    PubMed  Google Scholar 

  • Paterson E, Rattray EAS, Killham K (1996) Effect of elevated atmospheric CO2 concentration on C-partitioning and rhizosphere C-flow for three plant species. Soil Biol. Biochem 28:195–201

    CAS  Google Scholar 

  • Paterson E, Hall JM, Rattray EAS, Griffiths BS, Ritz K, Killham K (1997) Effect of elevated CO2 on rhizosphere carbon flow and soil microbial processes. Glob Chang Biol 3:363–377

    Google Scholar 

  • Pendall E, Bridgham S, Hanson PJ, Hungate B, Kicklighter DW, Johnson DW, Law BE, Luo Y, Megonigal JP, Olsrud M, Ryan MG, Wan S (2004) Below-ground process responses to elevated CO2 and temperature: a discussion of observations, measurement methods, and models. New Phytol 162:311–322

    Google Scholar 

  • Phillips RP (2007) Towards a rhizo-centric view of plant-microbial feedbacks under elevated atmospheric CO2. New Phytol 173:664–667

    PubMed  CAS  Google Scholar 

  • Phillips RL, Zak DR, Holmes WE, White DC (2002) Microbial community composition and function beneath temperate trees exposed to elevated atmospheric carbon dioxide and ozone. Oecologia 131:236–244

    Google Scholar 

  • Phillips DA, Fox TC, King MD, Bhuvaneswari TV, Teuber LR (2004) Microbial products trigger amino acid exudation from plant roots. Plant Physiol 136:2887–2894

    PubMed  CAS  Google Scholar 

  • Philips DA, Fox TC, Six J (2006a) Root exudation (net efflux of amino acids) may increase rhizodeposition under elevated CO2. Glob Chang Biol 12:561–567

    Google Scholar 

  • Phillips DA, Fox TC, Ferris H, Moore JC (2006b) The influence of elevated CO2 on diversity, activity and biogeochemical function of rhizosphere and soil bacterial communities. In: Nösberger J, Long SP, Norby RJ et al (eds) Managed ecosystems and CO2—case studies, processes and perspectives. Ecological studies serie, vol 187. Springer, Berlin, pp 413–428

    Google Scholar 

  • Pregitzer KS, Laskowski MJ, Burton AJ, Lessard VC, Zak DR (1998) Variation in sugar maple root respiration with root diameter and soil depth. Tree Physiol 18:665–670

    PubMed  Google Scholar 

  • Pregitzer KS, Zak DR, Maziasz J, DeForest J, Curtis PS, Lussenhop J (2000) Interactive effects of atmospheric CO2 and soil-N availability on fine roots of Populus tremuloides. Ecol Appl 10:18–33

    Google Scholar 

  • Pregitzer KS, Zak DR, Loya WM, Karberg NJ, King JS, Burton AJ (2007) The contribution of root – Rhizosphere biochemical cycles in changing world. In: Cardon ZG, Whitbeck JL (eds) The rhizosphere: an ecological perspective. Elsevier Academic Press, London, UK, pp 155–178

    Google Scholar 

  • Radajewski S, Ineson P, Parekh NR, Murrell JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403:646–649

    PubMed  CAS  Google Scholar 

  • Randlett DL, Zak DR, Pregitzer KS et al (1996) Elevated atmospheric carbon dioxide and leaf litter chemistry: Influences on microbial respiration and net nitrogen mineralization. Soil Sci Soc Am J 60:1571–1577

    Article  CAS  Google Scholar 

  • Richter M, Hartwig UA, Frossard E, Nosberger J, Cadisch G (2003) Gross fluxes of nitrogen in grassland soil exposed to elevated atmospheric pCO2 for seven years. Soil Biol Biochem 35:1325–1335

    CAS  Google Scholar 

  • Rillig MC, Allen MF (1999) What is the role of arbuscular mycorrhizal fungi in plant-to-ecosystem responses to elevated atmospheric CO2? Mycorrhiza 9:1–8

    Google Scholar 

  • Rillig MC, Field CB (2003) Arbuscular mycorrhizae respond to plants exposed to elevated atmospheric CO2 as a function of soil depth. Plant Soil 254:383–391

    CAS  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    PubMed  CAS  Google Scholar 

  • Rillig MC, Scow KM, Klironomos JN, Allen MF (1997) Microbial carbon-substrate utilization in the rhizosphere of Gutierrezia sarothrae grown in elevated atmospheric carbon dioxide. Soil Biol Biochem 29:1387–1394

    CAS  Google Scholar 

  • Rillig MC, Allen MF, Klironomos JN, Chiariello NR, Field CB (1998) Plant species-specific changes in root-inhabiting fungi in a California annual grassland: responses to elevated CO2 and nutrients. Oecologia 113:252–259

    Google Scholar 

  • Rillig MC, Wright SF, Kimball BA, Leavitt SW (2001) Elevated carbon dioxide and irrigation effects on water stable aggregates in a Sorghum field: a possible role for arbuscular mycorrhizal fungi. Glob Chang Biol 7:333–337

    Google Scholar 

  • Rillig MC, Wright SF, Shaw MR, Field CB (2002) Artificial climate warming positively affects arbuscular mycorrhizae but decreases soil aggregate water stability in an annual grassland. Oikos 97:52–58

    Google Scholar 

  • Rogers HH, Runion GB, Krupa SV (1994) Plant-responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere. Environ Pollut 83:155–189

    PubMed  CAS  Google Scholar 

  • Ronn R, Gavito M, Larsen J, Jakobsen I, Frederiksen H, Christensen S (2002) Response of free-living soil protozoa and microorganisms to elevated atmospheric CO2 and presence of mycorrhiza. Soil Biol Biochem 34:923–932

    CAS  Google Scholar 

  • Ronn R, Ekelund F, Christensen S (2003) Effects of elevated atmospheric CO2 on protozoan abundance in soil planted with wheat and on decomposition of wheat roots. Plant Soil 251:13–21

    CAS  Google Scholar 

  • Sadowsky MJ, Schortemeyer M (1997) Soil microbial responses to increased concentrations of atmospheric CO2. Glob Chang Biol 3:217–224

    Google Scholar 

  • Sanders IR, Streitwolf-Engel R, van der Heijden MGA, Boller T, Wiemken A (1998) Increased allocation to external hyphae of arbuscular mycorrhizal fungi under CO2 enrichment. Oecologia 117:496–503

    Google Scholar 

  • Schimel D, Melillo J, Tian H, McGuire AD, Kicklighter D, Kittel T, Rosenbloom N, Running S, Thornton P, Ojima D, Parton W, Kelly R, Sykes M, Neilson R Rizzo B (2000) Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science 287:2004–2006

    PubMed  CAS  Google Scholar 

  • Schortemeyer M, Hartwig UA, Hendrey GR, Sadowsky MJ (1996) Microbial community changes in the rhizospheres of white clover and perennial ryegrass exposed to free air carbon dioxide enrichment (FACE). Soil Biol Biochem 28:1717–1724

    CAS  Google Scholar 

  • Sonnemann I, Wolters V (2005) The microfood web of grassland soils responds to a moderate increase in atmospheric CO2. Glob Chang Biol 11:1148–1155

    Google Scholar 

  • Soussana JF, Hartwig UA (1996) The effects of elevated CO2 on symbiotic N2 fixation: a link between the carbon and nitrogen cycles in grassland ecosystems. Plant Soil 187:321–332

    CAS  Google Scholar 

  • Sowerby A, Blum H, Gray TRG, Ball AS (2000) The decomposition of Lolium perenne in soils exposed to elevated CO2: comparisons of mass loss of litter with soil respiration and soil microbial biomass. Soil Biol Biochem 32:1359

    CAS  Google Scholar 

  • Staddon PL (2005) Mycorrhizal fungi and environmental change: the need for a mycocentric approach. New Phytol 167:635–637

    PubMed  CAS  Google Scholar 

  • Staddon PL, Fitter AH, Graves JD (1999) Effect of elevated atmospheric CO2 on mycorrhizal colonization, external mycorrhizal hyphal production and phosphorus inflow in Plantago lanceolata and Trifolium repens in association with the arbuscular mycorrhizal fungus Glomus mosseae. Glob Chang Biol 5:347–358

    Google Scholar 

  • Staddon PL, Heinemeyer A, Fitter AH (2002) Mycorrhizas and global environmental change: research at different scales. Plant Soil 244:253–261

    CAS  Google Scholar 

  • Tarnawski S, Aragno M (2006) The influence of elevated CO2 on diversity, activity and biogeochemical function of rhizosphere and soil bacterial communities. In: Nösberger J, Long SP, Norby RJ et al (eds) Managed ecosystems and CO2-case studies, processes and perspectives. Ecological studies serie, vol 187. Springer, Berlin, pp 393–409

    Google Scholar 

  • Tenuta M, Ferris H (2004) Relationship between nematode like-history classification and sensitivity to stressor: ionic and osmotic effects of nitrogenous solutions. J Nematol 36:85–94

    PubMed  Google Scholar 

  • Thomas RB, Richter DD, Ye H, Heine PR, Strain BR (1991) Nitrogen dynamics and growth of seedlings of an N-fixing tree (Gliricidia sepium (Jacq.) Walp.) exposed to elevated atmospheric carbon dioxide. Oecologia 88:415–421

    Google Scholar 

  • Tissue DT, Megonigal JP, Thomas RB (1996) Nitrogenase activity and N2 fixation are stimulated by elevated CO2 in a tropical N2-fixing tree. Oecologia 109:28–33

    Google Scholar 

  • Treonis AM, Lussenhop JF (1997) Rapid response of soil protozoa to elevated CO2. Biol Fertil Soils 25:60–62

    CAS  Google Scholar 

  • Treseder KK, Allen MF (2000) Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition. New Phytol 147:189–200

    CAS  Google Scholar 

  • Van Ginkel JH, Gorissen A (1998) In situ decomposition of grass roots as affected by elevated atmospheric carbon dioxide. Soil Sci Soc Am J 62:951–958

    Article  Google Scholar 

  • Van Ginkel JH, Gorissen A, Polci D (2000) Elevated atmospheric carbon dioxide concentration: effects of increased carbon input in a Lolium perenne soil on microorganisms and decomposition. Soil Biol Biochem 32:449–456

    Google Scholar 

  • Van Veen JA, Morgan JAW, Whipps JM (2007) Methodological approaches to the study of carbon flow and the associated microbial population dynamics in the rhizosphere. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere. CRC, Boca Raton, pp 371–399

    Google Scholar 

  • Walker RF, Geisinger DR, Johnson DW, Ball JT (1997) Elevated atmospheric CO2 and soil N fertility effects on growth, mycorrhizal colonization, and xylem water potential of juvenile ponderosa pine in a field soil. Plant Soil 195:25–36

    CAS  Google Scholar 

  • Wan S, Norby RJ, Pregitzer KS, Ledford J, O'Neill EG (2004) CO2 enrichment and warming of the atmosphere enhance both productivity and mortality of maple tree fine roots. New Phytol 162:437–446

    Google Scholar 

  • Wiemken V, Laczko E, Ineichen K, Boller T (2001) Effects of elevated carbon dioxide and nitrogen fertilization on mycorrhizal fine roots and the soil microbial community in beech-spruce ecosystems on siliceous and calcareous soil. Microb Ecol 42:126–135

    PubMed  CAS  Google Scholar 

  • Williams MAC, Rice W, Owensby WE (2000) C dynamics and microbial activity in tallgrass prairie exposed to elevated CO2 for 8 years. Plant Soil 227:127–137

    CAS  Google Scholar 

  • Wolf J, Johnson NC, Rowland DL, Reich PB (2003) Elevated CO2 and plant species richness impact arbuscular mycorrhizal fungal spore communities. New Phytol 157:579–588

    Google Scholar 

  • Yeates GW, Tate KR, Newton PCD (1997) Response of the fauna of a grassland soil to doubling of atmospheric carbon dioxide concentration. Biol Fertil Soils 25:307–315

    CAS  Google Scholar 

  • Yeates GW, Newton PCD, Ross DJ (2003) Significant changes in soil microfauna in grazed pasture under elevated carbon dioxide. Biol Fertil Soils 38:319–326

    Google Scholar 

  • Zak DR, Pregitzer KS, Curtis PS, Teeri JA, Fogel R, Randlett DL (1993) Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles. Plant Soil 151:105–117

    CAS  Google Scholar 

  • Zak DR, Ringelberg DB, Pregitzer KS, Randlett DL, White DC, Curtis PS (1996) Soil microbial communities beneath Populus grandidentata grown under elevated atmospheric CO2. Ecol Appl 6:257–262

    Google Scholar 

  • Zak DR, Pregitzer KS, Curtis PS, Holmes WE (2000) Atmospheric CO2 and the composition and function of soil microbial communities. Ecol Appl 10:47–59

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes A. van Veen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drigo, B., Kowalchuk, G.A. & van Veen, J.A. Climate change goes underground: effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere. Biol Fertil Soils 44, 667–679 (2008). https://doi.org/10.1007/s00374-008-0277-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-008-0277-3

Keywords

Navigation