Skip to main content
Log in

Phosphorus fractions and sorption processes in soil samples taken in a forest-savanna sequence of the Gran Sabana in southern Venezuela

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

P fractions and sorption processes were studied in samples taken from the organic surface layer and in the underlying mineral soil of a forest-savanna sequence consisting of: (1) tall primary forest (TPF), (2) tall secondary forest (MSF), (3) low secondary forest (LSF), and (4) open savanna (S) in la Gran Sabana, South Venezuela. The organic surface layer in the TPF and MSF showed the highest P concentrations in all analysed P fractions. P in this organic layer was mainly associated with inorganic forms, suggesting that this layer is an important source of bio-available P. The organic surface layer was not present in LSF and S probably because of the occurrence of recurrent surface fires. The conversion of forest to savanna influenced the distribution of the different forms of P in the soil. While non-occluded (resin-+NaOH-P extractable) and organic (NaHCO3-+NaOH-+HCl-Po) P declined from the forest to savanna, occluded (concentrated HCl-extractable+residual P) forms increased. The correlation between sorption maxima and soil organic C was not significant; however, organically bound forms of Al were the main component that explained the adsorption capacity of these soils. The above findings suggest that the organic surface layer and the soil organic matter are important for maintaining P fertility in the undisturbed and little disturbed forests. However, when the system is heavily perturbed by fire the organic surface layer, the main P source, disappears and the patterns of P cycling change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abekoe MK, Sahrawat KL (2001) Phosphate retention and extractability in soils of the humid zone in west Africa. Geoderma 102:175–187

    Article  CAS  Google Scholar 

  • Cassanova E, Salas AM, Toro M (2002) Evaluating the effectiveness of phosphate fertilizers in some Venezuelan soils. Nutr Cycl Agroecosyst 63:13–20

    Article  Google Scholar 

  • Chacón N (2002) Dinámica del fósforo en un gradiente bosque-sabana en la Gran Sabana, sur de Venezuela. PhD thesis. Centro de Estudios Avanzados (CEA), Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas

  • Chacón N, Dezzeo N, Fölster H, Mogollón P (2002) Comparison between colorimetric and titration methods for organic carbon determination in acidic sandy soils. Commun Soil Sci Plant Anal 33:203–211

    Article  Google Scholar 

  • Cross AF, Schlesinger WH (1995) A literature review and evaluation of the Hedley fractionation; applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma 64:197–214

    Article  CAS  Google Scholar 

  • Dezzeo N (1994) Ecología de la altiplanicie de la Gran Sabana (Guayana Venezolana). I. Investigaciones sobre la dinámica bosque-sabana en el el sector SE: subcuencas de los ríos Yuruaní, Arabopó y Alto Kukenán. Sci Guaian 4

  • Dezzeo N, Chacón N, Mogollón P, Escalante G, Blones J, Pérez F, Flores S (2002) Segundo Informe de Avance del Proyecto de Grupo “Interacciones Atmósfera Biosfera en la Gran Sabana, Parque Nacional Canaima, Estado Bolívar” (CONICIT-G-98001124). Laboratorio de Ecología de Suelos del IVIC, Grupo A, Caracas

  • Fölster H (1986) Forest-savanna dynamics and desertification processes in La Gran Sabana. Interciencia 11:311–324

    Google Scholar 

  • Fölster H (1992) Holocene autochthonous forest degradation in southeast Venezuela. In: Goldammer JG (ed) Tropical forest in transition. Birkhäuser, Basel, pp 25–44

  • Fölster H, Dezzeo N (1994) La degradación de la vegetación. In: Ecología de la altiplanicie de la Gran Sabana (Guayana Venezolana). I. Investigaciones sobre la dinámica bosque-sabana en el el sector SE: subcuencas de los ríos Yuruaní, Arabopó y Alto Kukenán. Sci Guaian 4

  • Fölster H, Dezzeo N, Priess JA (2001) Soil-vegetation relationship in base-deficient premontane moist forest-savanna mosaic of the Venezuelan Guayana. Geoderma 104:95–113

    Article  Google Scholar 

  • Fox RL, Kamprath EJ (1970) Phosphate sorption isotherms for evaluating the phosphate requirement of soils. Soil Sci Soc Am Proc 34:902–907

    CAS  Google Scholar 

  • Galán C (1984) Memoria explicativa del mapa de zonas bioclimáticas de la cuenca del Río Caroní. CVG-EDELCA, División de Cuencas e Hidrología, Caracas

  • Garcia-Montiel DC, Nelly CH, Melillo J, Thomas S, Steudler PA, Cerri CC (2000) Soil phosphorus transformations following forest clearing for pasture in the Brazilian Amazon. Soil Sci Soc Am J 64:1792–1804

    CAS  Google Scholar 

  • Gerke J, Hermann R (1992) Adsorption of orthophosphate to humic-Fe-complexes and to amorphous Fe-oxide. Z. Pflanzenernähr Bodenkd 155:233–236

    Google Scholar 

  • Gerke J, Jungk A (1991) Separation of phosphorus bound to organic matrices from inorganic phosphorus in alkaline soil extracts by ultrafiltration. Commun Soil Sci Plant Anal 22:1621–1630

    CAS  Google Scholar 

  • Hedley MJ, Stewart JWB, Chauhan BS (1982) Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci Soc Am J 46:970–976

    CAS  Google Scholar 

  • Hernández L (1994) Clima, Hidrografía e Hidrología. In: Dezzeo N (ed) Ecología de la Altiplanicie de la Gran Sabana (Guayana Venezolana). I. Investigaciones sobre la dinámica bosque-sabana en el el sector SE: subcuencas de los ríos Yuruaní, Arabopó y Alto Kukenán. Sci Guaian 4:278–289

    Google Scholar 

  • Hernández L (1999) Ecología de la altiplanicie de la Gran Sabana (Guayana Venezolana). II. Estructura, diversidad, crecimiento y adaptación en bosques de las subcuencas de los ríos Yuruaní y Alto Kukenán. Sci Guaian 9

  • Herrera R, Jordan CF, Klinge H, Medina E (1978) Amazon ecosystems, their structure and functioning with particular emphasis on nutrients. Interciencia 3:223–232

    Google Scholar 

  • Hoffland E, Findenegg GR, Nelemans JA (1989) Solubilization of rock phosphate by rape. II Local root exudation of organic acids as a response to P-starvation. Plant Soil 113:161–165

    CAS  Google Scholar 

  • Hsu PH (1977) Aluminum oxides and oxyhidroxides. In: Dixon JB, Weed SB (eds) Minerals in soil environments. Soil Science Society America, Madison, Wis., pp 99–143

  • Jordan CF (1982) The nutrient balance of an Amazonian rain forest. Ecology 61:14–18

    Google Scholar 

  • Kodama H, Schnitzer (1977) Effect of fulvic acid on the crystallization of Fe(III) oxides. Geoderma 19:279–291

    Article  CAS  Google Scholar 

  • Kodama H, Schnitzer (1980) Effect of fulvic acid on the crystallization of aluminum hydroxides. Geoderma 24:195–205

    Article  CAS  Google Scholar 

  • Levesque M, Schnitzer (1967) Organo-metallic interactions in soils. Preparation and properties of fulvic acid-metal phosphates. Soil Sci 103:183–190

    CAS  Google Scholar 

  • López-Hernández D (1977) La química del fósforo en suelos ácidos. Universidad Central de Venezuela, Caracas

  • Ma JF (2000) Role of organic acids in detoxification of aluminum in higher plants. Plant Cell Physiol 41:383–390

    CAS  PubMed  Google Scholar 

  • McKeague JA (1967) An evaluation of 0,1 M pyrophosphate and pyrophosphate-dithionate in comparison with oxalate as extractants of the accumulation products in podzols and some other soils. Can J Soil Sci 47:95–99

    CAS  Google Scholar 

  • McKeague JA, Day JH (1966) Dithionite and oxalate extractable Fe and Al as aids differentiating various classes of soils. Can J Soil Sci 46:13–22

    CAS  Google Scholar 

  • Mehra OP, Jackson ML (1960) Iron oxide removal from soils and clays by a dithionate-citrate system buffered with sodium carbonate. Clays Clay Miner 7:317–327

    Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    CAS  Google Scholar 

  • Osodeke VE, Asawalam DOK, Kamalu OJ, Ugawa IK (1993) Phosphorus sorption characteristics of some soils of the rubber belt of Nigeria. Commun Soil Sci Plant Anal 24:1733–1743

    CAS  Google Scholar 

  • Parfitt RL (1978) Anion adsorption by soils and soil materials. Adv Agron 30:1–50

    CAS  Google Scholar 

  • Parfitt RL (1989) Phosphate reactions with natural allophone, ferrihydrite and goethite. J Soil Sci 40:359–369

    CAS  Google Scholar 

  • Parfitt RL, Smart R (1978) The mechanism of sulfate adsorption on iron oxides. Soil Sci Soc Am J 42:48–50

    CAS  Google Scholar 

  • Sanchez PA (1976) Properties and management of soils in the tropics. Wiley, New York, pp 259–260

  • Sanchez PA, Palm CA, Smyth J (1991) Phosphorus dynamics in shifting cultivation systems in the Amazon. In: Tiessen H, López-Hernández D, Salcedo EI (eds) Phosphorus cycles in terrestrial and aquatic ecosystems. SCOPE regional workshop 3: South and Central America. SCOPE, pp 142–160

    Google Scholar 

  • Schubert C, Briceño HO, Fritz P (1986) Paleoenvironmental aspects of the Caroni-Paragua river basin (southeastern Venezuela). Interciencia 11:278–289

    Google Scholar 

  • Schwertmann U (1973) Use oxalate for Fe extraction from soils. Can J Soil Sci 53:244–246

    CAS  Google Scholar 

  • Schwertmann U, Taylor RM (1977) Iron oxides. In: Dixon JB, Weed SB (eds) Minerals in soil environments. Soil Science Society of America, Madison, Wis., pp 145–180

  • Sharpley AN, Tiessen H, Cole CV (1987) Soil phosphorus forms extracted by soil tests as a function of pedogenesis. Soil Sci Soc Am J 51:362–365

    CAS  Google Scholar 

  • Sollins P (1991) Effects of soil microstructure on phosphorus sorption in soils of the humid tropics. In: Tiessen H, López-Hernández D, Salcedo EI (eds) Phosphorus cycles in terrestrial and aquatic ecosystems. SCOPE regional workshop 3: South and Central America. SCOPE, pp 168–175

    Google Scholar 

  • Solomon D, Lehmann J, Mamo T, Fritzsche F, Zech W (2002) Phosphorus forms and dynamics as influenced by land use changes in the sub-humid Ethiopian highlands. Geoderma 105:21–48

    Article  CAS  Google Scholar 

  • Statistica (2001) Statistica for windows. StatSoft, Tulsa Okla.

  • Tiessen H, Moir JO (1993) Characterization of available P by sequential extraction. In: Carter MR (ed) Soil sampling and methods of analysis. (Special publication of the Canadian Society of Soil Science) Lewis, Boca Raton, Fla., pp 75–86

  • Tiessen H, Frossard E, Mermut AR, Nyamekye AL (1991) Phosphorus sorption and properties of ferruginous nodules from semiarid soils from Ghana and Brazil. Geoderma 48:373–389

    Article  CAS  Google Scholar 

  • Tiessen H, Abekoe MK, Salcedo I, Owusu-Bennoah E (1993) Reversibility of phosphorus sorption by ferruginous nodules. Plant Soil 153:113–124

    CAS  Google Scholar 

  • Tiessen H, Chacon P, Cuevas E (1994) Phosphorus and nitrogen status in soils and vegetation along a toposequence of dystrophic rainforests on the upper Rio Negro. Oecologia 99:145–150

    Google Scholar 

  • Toro M, Azcon R, Barea JM (1998) The use of isotopic techniques to evaluate the interactive effects of rhizobium genotype, mycorrhizal fungi, phosphate-solubilizing rhizobacteria and rock phosphate on nitrogen and phosphorus acquisition by medicago sativa. New Phytol 138:265–273

    CAS  Google Scholar 

  • Vitousek PM (1984) Literfall, nutrient cycling, and nutrient limitation in tropical forest. Ecology 65:285–298

    CAS  Google Scholar 

  • Walbridge MR, Richardson CJ, Swank WT (1991) Vertical distribution of biological and geochemical phosphorus subcycles in two southern Appalachian forest soils. Biogeochemistry 13:61–85

    CAS  Google Scholar 

  • Walker TW, Syers JK (1976) The fate of phosphorus during pedogenesis. Geoderma 15:1–19

    CAS  Google Scholar 

  • Walkley A, Black A (1934) An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38

    CAS  Google Scholar 

Download references

Acknowledgements

This article is a contribution to the research project Atmosphere-Biosphere Interactions in la Gran Sabana, southern Venezuela. The work was supported by a grant of FONACIT, Venezuela (no. G-98001124). The authors wish to thank Venancio Sucre for his help in the field work, as well as Julio Blones, Bianca Muñoz and Edgardo Pérez for their technical assistance in the chemical analysis and Berta Sanchez for her help with the English correction of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noemí Chacón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chacón, N., Dezzeo, N. Phosphorus fractions and sorption processes in soil samples taken in a forest-savanna sequence of the Gran Sabana in southern Venezuela. Biol Fertil Soils 40, 14–19 (2004). https://doi.org/10.1007/s00374-004-0733-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-004-0733-7

Keywords

Navigation