Skip to main content
Log in

MVSFusion: infrared and visible image fusion method for multiple visual scenarios

  • Research
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

The purpose of infrared and visible fusion is to encompass significant targets and abundant texture details in multiple visual scenarios. However, existing fusion methods have not effectively addressed multiple visual scenarios including small objects, multiple objects, noise, low light, light pollution, overexposure and so on. To better adapt to multiple visual scenarios, we propose a general infrared and visible image fusion method based on saliency weight, termed as MVSFusion. Initially, we use SVM (Support Vector Machine) to classify visible images into two categories based on lighting conditions: Low-Light visible images and Brightly Lit visible images. Designing fusion rules according to distinct lighting conditions ensures adaptability to multiple visual scenarios. Our designed saliency weights guarantee saliency for both small and multiple objects across different scenes. On the other hand, we propose a new texture detail fusion method and an adaptive brightness enhancement technique to better address multiple visual scenarios such as noise, light pollution, nighttime, and overexposure. Extensive experiments indicate that MVSFusion excels not only in visual quality and quantitative evaluation compared to state-of-the-art algorithms but also provides advantageous support for high-level visual tasks. Our code is publicly available at: https://github.com/VCMHE/MVSFusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are available at: https://github.com/VCMHE/MVSFusion.

References

  1. Jagtap, N.S., Thepade, S.D.: High-quality image multi-focus fusion to address ringing and blurring artifacts without loss of information. Vis. Comput. 38, 4353–4371 (2022). https://doi.org/10.1007/s00371-021-02300-5

    Article  Google Scholar 

  2. Guo, H., Sheng, B., Li, P., Chen, C.L.P.: Multiview high dynamic range image synthesis using fuzzy broad learning system. IEEE Trans Cybern. 51, 2735–2747 (2021). https://doi.org/10.1109/TCYB.2019.2934823

    Article  PubMed  Google Scholar 

  3. He, K., Zhang, X., Xu, D., Gong, J., Xie, L.: Fidelity-driven optimization reconstruction and details preserving guided fusion for multi-modality medical image. IEEE Trans. Multimed. 25, 4943–4957 (2023)

    Article  Google Scholar 

  4. Hou, R., Zhou, D., Nie, R., Liu, D., Xiong, L., Guo, Y., Yu, C.: VIF-Net: an unsupervised framework for infrared and visible image fusion. IEEE Trans. Comput. Imaging 6, 640–651 (2020)

    Article  Google Scholar 

  5. Tan, A., Guo, T., Zhao, Y., Wang, Y., Li, X.: Object detection based on polarization image fusion and grouped convolutional attention network. Vis. Comput. 1–17 (2023). https://doi.org/10.1007/s00371-023-03022-6

  6. Soroush, R., Baleghi, Y.: NIR/RGB image fusion for scene classification using deep neural networks. Vis. Comput. 39, 2725–2739 (2023). https://doi.org/10.1007/s00371-022-02488-0

    Article  Google Scholar 

  7. Ding, Z., Li, H., Zhou, D., Liu, Y., Hou, R.: Multi-spectral color vision fusion jointly with two-stream feature interaction and color transformation network. Digit. Signal Process. 133, 103875 (2023)

    Article  Google Scholar 

  8. Yu, C., Li, S., Feng, W., Zheng, T., Liu, S.: SACA-fusion: a low-light fusion architecture of infrared and visible images based on self-and cross-attention. Vis. Comput. 1–10 (2023). https://doi.org/10.1007/s00371-023-03037-z

  9. Li, J., Guo, X., Lu, G., Zhang, B., Xu, Y., Wu, F., Zhang, D.: DRPL: deep regression pair learning for multi-focus image fusion. IEEE Trans. Image Process. 29, 4816–4831 (2020). https://doi.org/10.1109/TIP.2020.2976190

    Article  ADS  Google Scholar 

  10. Lin, X., Li, J., Ma, Z., Li, H., Li, S., Xu, K., Lu, G., Zhang, D.: Learning modal-invariant and temporal-memory for video-based visible-infrared person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 20973–20982 (2022)

  11. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft coco: Common objects in context. In: Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6–12, 2014, Proceedings, Part V 13. pp. 740–755. Springer (2014)

  12. Lu, R., Gao, F., Yang, X., Fan, J., Li, D.: A novel infrared and visible image fusion method based on multi-level saliency integration. Vis. Comput. 39, 2321–2335 (2023)

    Article  Google Scholar 

  13. Liu, J., Jiang, Z., Wu, G., Liu, R., Fan, X.: A unified image fusion framework with flexible bilevel paradigm integration. Vis. Comput. 39, 4869–4886 (2022)

    Article  Google Scholar 

  14. Xu, H., Ma, J., Jiang, J., Guo, X., Ling, H.: U2Fusion: a unified unsupervised image fusion network. IEEE Trans. Pattern Anal. Mach. Intell. 44, 502–518 (2022). https://doi.org/10.1109/TPAMI.2020.3012548

    Article  PubMed  Google Scholar 

  15. Wang, X., Hua, Z., Li, J.: Cross-UNet: dual-branch infrared and visible image fusion framework based on cross-convolution and attention mechanism. Vis. Comput. 39, 4801–4818 (2022)

    Article  Google Scholar 

  16. Aghamaleki, J.A., Ghorbani, A.: Image fusion using dual tree discrete wavelet transform and weights optimization. Vis. Comput. 39, 1181–1191 (2023)

    Article  Google Scholar 

  17. Zhao, Z., Xu, S., Zhang, C., Liu, J., Zhang, J.: Bayesian fusion for infrared and visible images. Signal Process. 177, 107734 (2020)

    Article  Google Scholar 

  18. Xie, Q., Hu, J., Wang, X., Zhang, D., Qin, H.: Novel and fast EMD-based image fusion via morphological filter. Vis. Comput. 39, 4249–4265 (2022)

    Article  Google Scholar 

  19. Li, L., Li, H., Dang, E., Liu, B.: Compressive sensing method for recognizing cat-eye effect targets. Appl. Opt. 52, 7033–7039 (2013)

    Article  PubMed  ADS  Google Scholar 

  20. Li, L., Li, H., Li, T., Gao, F.: Infrared small target detection in compressive domain. Electron. Lett. 50, 510–512 (2014)

    Article  ADS  Google Scholar 

  21. Hou, R., Ren, T., Wu, G.: MIRNet: a robust RGBT tracking jointly with multi-modal interaction and refinement. In: 2022 IEEE International Conference on Multimedia and Expo (ICME). pp. 1–6. IEEE (2022)

  22. Yin, W., He, K., Xu, D., Yue, Y., Luo, Y.: Adaptive low light visual enhancement and high-significant target detection for infrared and visible image fusion. Vis. Comput. 39, 6723–6742 (2023). https://doi.org/10.1007/s00371-022-02759-w

    Article  Google Scholar 

  23. Ding, Z., Li, H., Zhou, D., Liu, Y., Hou, R.: A robust infrared and visible image fusion framework via multi-receptive-field attention and color visual perception. Appl. Intell. 53, 8114–8132 (2023)

    Article  Google Scholar 

  24. Chen, J., Li, X., Luo, L., Mei, X., Ma, J.: Infrared and visible image fusion based on target-enhanced multiscale transform decomposition. Inf. Sci. 508, 64–78 (2020). https://doi.org/10.1016/j.ins.2019.08.066

    Article  Google Scholar 

  25. Li, H., Wu, X.-J.: Infrared and visible image fusion using latent low-rank representation. arXiv180408992. (2018)

  26. Li, H., Wu, X.-J., Kittler, J.: MDLatLRR: A novel decomposition method for infrared and visible image fusion. IEEE Trans. Image Process. 29, 4733–4746 (2020)

    Article  ADS  Google Scholar 

  27. Li, G., Lin, Y., Qu, X.: An infrared and visible image fusion method based on multi-scale transformation and norm optimization. Inf. Fusion. 71, 109–129 (2021). https://doi.org/10.1016/j.inffus.2021.02.008

    Article  Google Scholar 

  28. Ma, J., Zhou, Z., Wang, B., Zong, H.: Infrared and visible image fusion based on visual saliency map and weighted least square optimization. Infrared Phys. Technol. 82, 8–17 (2017). https://doi.org/10.1016/j.infrared.2017.02.005

    Article  CAS  ADS  Google Scholar 

  29. Tang, L., Xiang, X., Zhang, H., Gong, M., Ma, J.: DIVFusion: darkness-free infrared and visible image fusion. Inf. Fusion. 91, 477–493 (2023)

    Article  Google Scholar 

  30. Zhang, H., Ma, J.: SDNet: a versatile squeeze-and-decomposition network for real-time image fusion. Int. J. Comput. Vis. 129, 2761–2785 (2021)

    Article  Google Scholar 

  31. Wang, D., Liu, J., Fan, X., Liu, R.: Unsupervised misaligned infrared and visible image fusion via cross-modality image generation and registration. arXiv220511876. (2022)

  32. Xu, H., Zhang, H., Ma, J.: Classification saliency-based rule for visible and infrared image fusion. IEEE Trans. Comput. Imaging. 7, 824–836 (2021)

    Article  MathSciNet  Google Scholar 

  33. Zhou, Z., Fei, E., Miao, L., Yang, R.: A perceptual framework for infrared–visible image fusion based on multiscale structure decomposition and biological vision. Inf. Fusion. 93, 174–191 (2023)

    Article  Google Scholar 

  34. Tan, W., Zhou, H., Song, J., Li, H., Yu, Y., Du, J.: Infrared and visible image perceptive fusion through multi-level Gaussian curvature filtering image decomposition. Appl. Opt. 58, 3064 (2019). https://doi.org/10.1364/AO.58.003064

    Article  PubMed  ADS  Google Scholar 

  35. Guo, C., Fan, D., Jiang, Z., Zhang, D.: MDFN: mask deep fusion network for visible and infrared image fusion without reference ground-truth. Expert Syst. Appl. 211, 118631 (2023)

    Article  Google Scholar 

  36. Li, C., He, K., Xu, D., Tao, D., Lin, X., Shi, H., Yin, W.: Superpixel-based adaptive salient region analysis for infrared and visible image fusion. Neural Comput. Appl. 35, 22511–22529 (2023)

    Article  Google Scholar 

  37. Yin, W., He, K., Xu, D., Luo, Y., Gong, J.: Significant target analysis and detail preserving based infrared and visible image fusion. Infrared Phys. Technol. 121, 104041 (2022)

    Article  Google Scholar 

  38. Ma, J., Yu, W., Liang, P., Li, C., Jiang, J.: FusionGAN: a generative adversarial network for infrared and visible image fusion. Inf. Fusion. 48, 11–26 (2019)

    Article  CAS  Google Scholar 

  39. Li, H., Zhao, J., Li, J., Yu, Z., Lu, G.: Feature dynamic alignment and refinement for infrared-visible image fusion: translation robust fusion. Inf Fusion. 95, 26–41 (2023). https://doi.org/10.1016/j.inffus.2023.02.011

    Article  Google Scholar 

  40. Han, M., Yu, K., Qiu, J., Li, H., Wu, D., Rao, Y., Yang, Y., Xing, L., Bai, H., Zhou, C.: Boosting target-level infrared and visible image fusion with regional information coordination. Inf Fusion. 92, 268–288 (2023). https://doi.org/10.1016/J.INFFUS.2022.12.005

    Article  Google Scholar 

  41. Wang, X., Guan, Z., Qian, W., Cao, J., Wang, C., Yang, C.: Contrast saliency information guided infrared and visible image fusion. IEEE Trans. Comput. Imaging. 9, 769–780 (2023). https://doi.org/10.1109/TCI.2023.3304471

    Article  Google Scholar 

  42. Liu, J., Fan, X., Huang, Z., Wu, G., Liu, R., Zhong, W., Luo, Z.: Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5802–5811 (2022)

  43. Takumi, K., Watanabe, K., Ha, Q., Tejero-De-Pablos, A., Ushiku, Y., Harada, T.: Multispectral object detection for autonomous vehicles. In: Proceedings of the on Thematic Workshops of ACM Multimedia 2017. pp. 35–43 (2017)

  44. Lee, H., Jeon, J., Kim, J., Lee, S.: Structure-texture decomposition of images with interval gradient. In: Computer Graphics Forum. 36(6), 262–274 (2017)

  45. Xydeas, C.S., Petrovic, V.: Others: objective image fusion performance measure. Electron. Lett. 36, 308–309 (2000)

    Article  ADS  Google Scholar 

  46. Sheikh, H.R., Bovik, A.C.: Image information and visual quality. IEEE Trans. Image Process. 15, 430–444 (2006)

    Article  PubMed  ADS  Google Scholar 

  47. Qu, G., Zhang, D., Yan, P.: Information measure for performance of image fusion. Electron. Lett. 38, 1 (2002)

    Article  Google Scholar 

  48. Sheikh, H.R., Bovik, A.C., De Veciana, G.: An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Trans. Image Process. 14, 2117–2128 (2005)

    Article  PubMed  ADS  Google Scholar 

  49. Ha, Q., Watanabe, K., Karasawa, T., Ushiku, Y., Harada, T.: MFNet: Towards real-time semantic segmentation for autonomous vehicles with multi-spectral scenes. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2017, Vancouver, BC, Canada, September 24–28, 2017. pp. 5108–5115. IEEE (2017)

  50. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2274–2282 (2012)

    Article  PubMed  Google Scholar 

  51. Xu, H., Ma, J., Le, Z., Jiang, J., Guo, X.: FusionDN: a unified densely connected network for image fusion. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7–12, 2020. pp. 12484–12491. AAAI Press (2020)

  52. Toet, A.: TNO image fusion dataset. figshare. Dataset (2014)

  53. Li, H., Wu, X.-J.: DenseFuse: a fusion approach to infrared and visible images. IEEE Trans. Image Process. 28, 2614–2623 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  54. Lin, X., Sun, S., Huang, W., Sheng, B., Li, P., Feng, D.D.: EAPT: efficient attention pyramid transformer for image processing. IEEE Trans. Multimed. 25, 50–61 (2023)

  55. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 770–778 (2016)

  56. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5–9, 2015, Proceedings, Part III 18. pp. 234–241. Springer (2015)

  57. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 779–788 (2016)

Download references

Acknowledgements

This work was supported in part the Yunnan provincial major science and technology special plan projects under Grant 202202AD080003, in part by the National Natural Science Foundation of China under Grant 62202416, 62162068, Grant 62162065, in part by the Yunnan Province Ten Thousand Talents Program and Yunling Scholars Special Project under Grant YNWR-YLXZ-2018-022, in part by the Yunnan Provincial Science and Technology Department-Yunnan University “Double First Class” Construction Joint Fund Project under Grant No. 202301BF070001-025, and in part by the Research Foundation of Yunnan Province No. 202105AF150011.

Author information

Authors and Affiliations

Authors

Contributions

C.L. and K.H. wrote the main manuscript text, D.X. funded this work, Y.L. and Y.Z. prepared the experimental data and verified the experimental results. All authors reviewed the manuscript.

Corresponding author

Correspondence to Kangjian He.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., He, K., Xu, D. et al. MVSFusion: infrared and visible image fusion method for multiple visual scenarios. Vis Comput (2024). https://doi.org/10.1007/s00371-024-03273-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00371-024-03273-x

Keywords

Navigation