Skip to main content
Log in

A unified image fusion framework with flexible bilevel paradigm integration

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Multi-modality image fusion refers to integrating series of images acquired from different sensors and obtaining a fused image which is expected to provide more comprehensive information. It plays a pivotal role in many computer vision tasks and promotes the performance of subsequent applications. Most existing approaches attempted to design appropriate fusion rules for specific image fusion task, which have a bad generalization to different fusion tasks. Apart from that, the texture details in the fused images are common blurred due to undesirable artifacts introduced from the different modalities. In this paper, we propose a generic multimodal image fusion framework by combing the visual saliency model and flexible bilevel paradigm. Specifically, we decompose input images into an intensity layer, representing large-scale intensity variations, and a detail layer, containing small textures changes. Then we fuse the intensity layer through visual saliency map to improve the contrast of an image under consideration, and design a bilevel paradigm for fusing the detail layer to obtain fine details. Furthermore, to make the fused result visual friendly, a deep prior is built in the bilevel paradigm. Besides, an elastic target-guided hyper-parameter is introduced to dominate the proportion of the textural details from the source images, which can be further adjusted in accordance with different fusion tasks. We conducted the experiments on three available datasets to demonstrate the superiority of our framework against the state-of-the-art methods quantitatively and qualitatively in a variety of fusion tasks, including infrared and visible image, near-infrared and visible image fusion and multimodal medical image fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. https://figshare.com/articles/TNOImageFusionDataset/1008029.

  2. http://www.med.harvard.edu/AANLIB/home.html.

References

  1. Viola P, Jones M, et al.: Rapid object detection using a boosted cascade of simple features. In: CVPR, vol 1, pp 511–518 (2001)

  2. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE TPAMI 32(9), 1627–1645 (2010)

    Google Scholar 

  3. Dikmen, M., Akbas, E., Huang, T.S., Ahuja, N.: Pedestrian recognition with a learned metric. In: ACCV, pp. 501–512. Springer, Berlin (2010)

  4. Gray, D., Tao, H.: Viewpoint invariant pedestrian recognition with an ensemble of localized features. In: ECCV, pp. 262–275. Springer, Berlin (2008)

  5. Duan, Z., Lan, J., Xu, T., Ni, B., Zhuang, L., Yang, X.: Pedestrian detection via bi-directional multi-scale analysis. In: ACM MM, pp. 1023–1031. ACM, New York (2017)

  6. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)

  7. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR, pp. 580–587 (2014)

  8. Pu, M., Huang, Y., Guan, Q., Zou, Q.: Graphnet: learning image pseudo annotations for weakly-supervised semantic segmentation. In: ACM MM, pp. 483–491. ACM, New York (2018)

  9. Bhatnagar, G., Wu, Q.M.J., Liu, Z.: Directive contrast based multimodal medical image fusion in NSCT domain. IEEE Trans. Multimedia 15(5), 1014–1024 (2013)

    Google Scholar 

  10. Li, S., Kang, X., Jianwen, H.: Image fusion with guided filtering. IEEE Trans. Image Process. 22(7), 2864–2875 (2013)

    Google Scholar 

  11. Selesnick, I.W., Baraniuk, R.G., Kingsbury, N.G.: The dual-tree complex wavelet transform. IEEE Signal Process. Mag. 22(6), 123–151 (2005)

    Google Scholar 

  12. Liu, Z., Tsukada, K., Hanasaki, K., Ho, Y.-K., Dai, Y.P.: Image fusion by using steerable pyramid. Pattern Recogn. Lett. 22(9), 929–939 (2001)

    MATH  Google Scholar 

  13. Adu, J., Gan, J., Wang, Y., Huang, J.: Image fusion based on nonsubsampled contourlet transform for infrared and visible light image. Infrared Phys. Technol. 61, 94–100 (2013)

    Google Scholar 

  14. Bruno Olshausen, A., David, F.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583), 607 (1996)

    Google Scholar 

  15. Xiaoqi, L., Zhang, B., Zhao, Y., Liu, H., Pei, H.: The infrared and visible image fusion algorithm based on target separation and sparse representation. Infrared Phys. Technol. 67, 397–407 (2014)

    Google Scholar 

  16. Zhang, Q., Liu, Y., Blum, R.S., Jungong, H., Dacheng, T.: Sparse representation based multi-sensor image fusion for multi-focus and multi-modality images. A review. Inf. Fus. 40, 57–75 (2018)

    Google Scholar 

  17. Zhu, Z., Yin, H., Chai, Y., Li, Y., Qi, G.: A novel multi-modality image fusion method based on image decomposition and sparse representation. Inf. Sci. 432, 516–529 (2018)

    MathSciNet  Google Scholar 

  18. Liu, Y., Chen, X., Ward, R.K., Wang, J.Z.: Medical image fusion via convolutional sparsity based morphological component analysis. IEEE Signal Process. Lett. 26(3), 485–489 (2019)

    Google Scholar 

  19. Yu, L., Xun, C., Ward, R.K., Wang, J.Z.: Image fusion with convolutional sparse representation. IEEE Signal Process. Lett. 23(12), 1882–1886 (2016)

    Google Scholar 

  20. Li, H., Xiao-Jun, W.: Densefuse: a fusion approach to infrared and visible images. IEEE Trans. Image Process. 28(5), 2614–2623 (2018)

    MathSciNet  Google Scholar 

  21. Ma, J., Wei, Y., Liang, P., Li, C., Jiang, J.: Fusiongan: a generative adversarial network for infrared and visible image fusion. Inf. Fus. 48, 11–26 (2019)

    Google Scholar 

  22. Kun, L., Lei, G., Huihui, L., Jingsong, C.: Fusion of infrared and visible light images based on region segmentation. Chin. J. Aeronaut. 22(1), 75–80 (2009)

    Google Scholar 

  23. Ma, J., Chen, C., Li, C., Huang, J.: Infrared and visible image fusion via gradient transfer and total variation minimization. Inf. Fus. 31, 100–109 (2016)

    Google Scholar 

  24. Adu, J., Xie, S., Gan, J.: Image fusion based on visual salient features and the cross-contrast. J. Vis. Commun. Image Represent. 40, 218–224 (2016)

    Google Scholar 

  25. Hai-Miao, H., Jiawei, W., Li, B., Guo, Q., Zheng, J.: An adaptive fusion algorithm for visible and infrared videos based on entropy and the cumulative distribution of gray levels. IEEE Trans. Multimedia 19(12), 2706–2719 (2017)

    Google Scholar 

  26. Zhao, W., Huimin, L., Wang, D.: Multisensor image fusion and enhancement in spectral total variation domain. IEEE Trans. Multimedia 20(4), 866–879 (2018)

    Google Scholar 

  27. Zhao, W., Huchuan, L.: Medical image fusion and denoising with alternating sequential filter and adaptive fractional order total variation. IEEE Trans. Instrum. Meas. 66(9), 2283–2294 (2017)

    Google Scholar 

  28. Liu, R., Liu, J., Jiang, Z., Fan, X., Luo, Z.: A bilevel integrated model with data-driven layer ensemble for multi-modality image fusion. IEEE Trans. Image Process. 30, 1261–1274 (2020)

    Google Scholar 

  29. Yang, B., Li, S.: Multifocus image fusion and restoration with sparse representation. IEEE Trans. Instrum. Meas. 59(4), 884–892 (2010)

    Google Scholar 

  30. Liu, J., Yuhui, W., Huang, Z., Liu, R., Fan, X.: SMoA: Searching a modality-oriented architecture for infrared and visible image fusion. IEEE Signal Process. Lett. 28, 1818–1822 (2021)

    Google Scholar 

  31. Liu, Y., Xun, C., Peng, H., Wang, Z.: Multi-focus image fusion with a deep convolutional neural network. Inf. Fus. 36, 191–207 (2017)

    Google Scholar 

  32. Nencini, F., Garzelli, A., Baronti, S., Alparone, L.: Remote sensing image fusion using the curvelet transform. Inf. Fus. 8(2), 143–156 (2007)

    Google Scholar 

  33. Ma, J., Zhou, Z., Wang, B., Zong, H.: Infrared and visible image fusion based on visual saliency map and weighted least square optimization. Infrared Phys. Technol. 82, 8–17 (2017)

    Google Scholar 

  34. Meng, F., Song, M., Guo, B., Shi, R., Shan, D.: Image fusion based on object region detection and non-subsampled contourlet transform. Comput. Electr. Eng. 62, 375–383 (2017)

    Google Scholar 

  35. Zhu, P., Ma, X., Huang, Z.: Fusion of infrared-visible images using improved multi-scale top-hat transform and suitable fusion rules. Infrared Phys. Technol. 81, 282–295 (2017)

    Google Scholar 

  36. Li, W., Jiao, D., Zhao, Z., Long, J.: Fusion of medical sensors using adaptive cloud model in local Laplacian pyramid domain. IEEE Trans. Biomed. Eng. 66(4), 1172–1183 (2018)

    Google Scholar 

  37. Chai, P., Luo, X., Zhang, Z.: Image fusion using quaternion wavelet transform and multiple features. IEEE Access 5, 6724–6734 (2017)

    Google Scholar 

  38. Zhang, B., Xiaoqi, L., Pei, H., Zhao, Y.: A fusion algorithm for infrared and visible images based on saliency analysis and non-subsampled shearlet transform. Infrared Phys. Technol. 73, 286–297 (2015)

    Google Scholar 

  39. Liang, J., He, Y., Liu, D., Zeng, X.: Image fusion using higher order singular value decomposition. IEEE Trans. Image Process. 21(5), 2898–2909 (2012)

    MathSciNet  MATH  Google Scholar 

  40. Yin, H.: Sparse representation with learned multiscale dictionary for image fusion. Neurocomputing 148, 600–610 (2015)

    Google Scholar 

  41. Li, H., He, X., Tao, D., Tang, Y., Wang, R.: Joint medical image fusion, denoising and enhancement via discriminative low-rank sparse dictionaries learning. Pattern Recogn. 79, 130–146 (2018)

    Google Scholar 

  42. Yu, L., Xun, C., Ward, R.K., Wang, J.Z.: Image fusion with convolutional sparse representation. IEEE Signal Process. Lett. 23(12), 1882–1886 (2016)

    Google Scholar 

  43. Liu, J., Fan, X., Jiang, J., Liu, R., Luo, Z.: Learning a deep multi-scale feature ensemble and an edge-attention guidance for image fusion. IEEE Trans. Circuits Syst. Video Technol. 32(1), 105–119 (2021)

    Google Scholar 

  44. Zhong, J., Yang, B., Li, Y., Zhong, F., Chen, Z.: Image fusion and super-resolution with convolutional neural network. In: Chinese Conference on Pattern Recognition, pp. 78–88. Springer, Berlin (2016)

  45. Liu, Y., Chen, X., Cheng, J., Peng, H., Wang, Z.: Infrared and visible image fusion with convolutional neural networks. Int. J. Wavelets Multiresolution Inf. Process. 16(03), 1850018 (2018)

    MathSciNet  MATH  Google Scholar 

  46. Saeedi, J., Faez, K.: Infrared and visible image fusion using fuzzy logic and population-based optimization. Appl. Soft Comput. 12(3), 1041–1054 (2012)

    Google Scholar 

  47. Guo, H., Ma, Y., Mei, X., Ma, J.: Infrared and visible image fusion based on total variation and augmented Lagrangian. J. Opt. Soc. Am. A 34(11), 1961–1968 (2017)

    Google Scholar 

  48. Shibata, T., Tanaka, M., Okutomi, M.: Versatile visible and near-infrared image fusion based on high visibility area selection. J. Electron. Imaging 25(1), 013016 (2016)

    Google Scholar 

  49. Han, Y., Cai, Y., Cao, Y., Xiaoming, X.: A new image fusion performance metric based on visual information fidelity. Inf. Fus. 14(2), 127–135 (2013)

    Google Scholar 

  50. Bai, X.: Morphological center operator based infrared and visible image fusion through correlation coefficient. Infrared Phys. Technol. 76, 546–554 (2016)

    Google Scholar 

  51. Li, H., Qiu, H., Zhengtao, Y., Zhang, Y.: Infrared and visible image fusion scheme based on NSCT and low-level visual features. Infrared Phys. Technol. 76, 174–184 (2016)

    Google Scholar 

  52. Wang, A., Jiang, J., Zhang, H.: Multi-sensor image decision level fusion detection algorithm based on DS evidence theory. In: 2014 Fourth International Conference on Instrumentation and Measurement, Computer, Communication and Control, pp. 620–623. IEEE (2014)

  53. Lahoud, F., Süsstrunk, S.: Fast and efficient zero-learning image fusion. arXiv preprint arXiv:1905.03590 (2019)

  54. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

  55. Nichol, A., Achiam, J., Schulman, J.: On first-order meta-learning algorithms. arXiv preprint arXiv:1803.02999 (2018)

  56. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2016)

    MathSciNet  MATH  Google Scholar 

  57. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser: Residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    MathSciNet  MATH  Google Scholar 

  58. Russakovsky, O., Deng, J., Hao, S., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    MathSciNet  Google Scholar 

  59. Aslantas, V., Bendes, E.: A new image quality metric for image fusion: the sum of the correlations of differences. AEU-Int. J. Electron. Commun. 69(12), 1890–1896 (2015)

    Google Scholar 

  60. Xydeas, C.S., Vladimir, P.: Objective image fusion performance measure. Electron. Lett. 36(4), 308–309 (2000)

    Google Scholar 

  61. Liu, C.H., Qi, Y., Ding, W.R.: Infrared and visible image fusion method based on saliency detection in sparse domain. Infrared Phys. Technol. 83, 94–102 (2017)

    Google Scholar 

  62. Qinglei, D., Han, X., Ma, Y., Huang, J., Fan, F.: Fusing infrared and visible images of different resolutions via total variation model. Sensors 18(11), 3827 (2018)

  63. Barra, V., Boire, J.-Y.: A general framework for the fusion of anatomical and functional medical images. Neuroimage 13(3), 410–424 (2001)

    Google Scholar 

  64. Liu, Y., Wang, Z.: Simultaneous image fusion and denoising with adaptive sparse representation. Image Process. IET 9(5), 347–357 (2014)

    Google Scholar 

  65. Yin, M., Liu, X., Liu, Y., Chen, X.: Medical image fusion with parameter-adaptive pulse coupled neural network in nonsubsampled shearlet transform domain. IEEE Instrum. Meas. Soc. 68(1), 49–64 (2019)

    Google Scholar 

  66. Brown, M., Süsstrunk, S.: Multi-spectral sift for scene category recognition. In: CVPR, pp. 177–184 (2011)

  67. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271), pp. 839–846. IEEE (1998)

Download references

Funding

This paper is funded by Science Foundation of China under Grant (Nos. 61922019, 61733002 and 616721255),LiaoNing Revitalization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Fan.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service, and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled, “A Unified Image Fusion Framework with Flexible Bilevel Paradigm Integration.”

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Jiang, Z., Wu, G. et al. A unified image fusion framework with flexible bilevel paradigm integration. Vis Comput 39, 4869–4886 (2023). https://doi.org/10.1007/s00371-022-02633-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-022-02633-9

Keywords

Navigation