Skip to main content
Log in

Improving cache placement for efficient cache-based rendering

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper proposes a new method to improve cache placement for various rendering algorithms using caching techniques. The proposed method comprises two stages. The first stage computes an initial cache distribution based on shading points’ geometric proximity. We present a view-guided method to cluster shading points based on their world-space positions and surface normals, while considering the camera view to avoid producing small clusters in the final image. The proposed method is more robust and easier to control than previous shading point clustering methods. After computing the shading functions at the initial cache locations, the second stage of our method utilizes the results to allocate additional caches to regions with shading discontinuities. To achieve this, a discontinuity map is created to identify these regions and used to insert new caches based on importance sampling. We integrate the proposed method into several cache-based algorithms, including irradiance caching, importance caching, and ambient occlusion. Extensive experiments show that our method outperforms other cache distributions, producing better results both numerically and visually.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

The source code and test scenes used in this work are available from the corresponding author on reasonable request.

References

  1. Ward, G.J., Rubinstein, F.M., Clear, R.D.: A ray tracing solution for diffuse interreflection. In: Proceeding of the SIGGRAPH, pp. 85–92 (1988). https://doi.org/10.1145/378456.378490

  2. Ward, G., Heckbert, P.: Irradiance gradients. In: Proceedings of the Eurographics Workshop on Rendering, pp. 85–98 (1992). https://doi.org/10.1145/1401132.1401225

  3. Tabellion, E., Lamorlette, A.: An approximate global illumination system for computer generated films. ACM Trans. Graph. Proc. SIGGRAPH 23(3), 469–476 (2004). https://doi.org/10.1145/1186562.1015748

    Article  Google Scholar 

  4. Gautron, P., Krivánek, J., Bouatouch, K., Pattanaik, S.: Radiance cache splatting: A GPU-friendly global illumination algorithm. In: Proceedings of the Eurographics Symposium on Rendering (2005). https://doi.org/10.1145/1187112.1187154

  5. Brouillat, J., Gautron, P., Bouatouch, K.: Photon-driven irradiance cache. Comput. Graphic. Forum 27(7), 1971–1978 (2008). https://doi.org/10.1111/j.1467-8659.2008.01346.x

    Article  Google Scholar 

  6. Schwarzhaupt, J., Jensen, H.W., Jarosz, W.: Practical hessian-based error control for irradiance caching. ACM Trans. Graph. (Proc. SIGGRAPH) (2012) https://doi.org/10.1145/2366145.2366212

  7. Křivánek, J., Gautron, P., Pattanaik, S., Bouatouch, K.: Radiance caching for efficient global illumination computation. IEEE Trans. Visual. Comput. Gr. 11(5), 550–561 (2005). https://doi.org/10.1109/TVCG.2005.83

    Article  Google Scholar 

  8. Křivánek, J., Bouatouch, K., Pattanaik, S., Žára, J.: Making radiance and irradiance caching practical: Adaptive caching and neighbor clamping. In: Proceedings of the Eurographics Symposium on Rendering, pp. 127–138 (2006). https://doi.org/10.2312/EGWR/EGSR06/127-138

  9. Gassenbauer, V., Krivanek, J., Bouatouch, K.: Spatial Directional Radiance Caching. Comput. Gr. Forum (2009). https://doi.org/10.1111/j.1467-8659.2009.01496.x

    Article  Google Scholar 

  10. Scherzer, D., Nguyen, C.H., Ritschel, T., Seidel, H.-P.: Pre-convolved radiance caching. Comput. Gr. Forum 31(4), 1391–1397 (2012). https://doi.org/10.1111/j.1467-8659.2012.03134.x

    Article  Google Scholar 

  11. Rehfeld, H., Zirr, T., Dachsbacher, C.: Clustered pre-convolved radiance caching. In: Proceedings of the Eurographics Symposium on Parallel Graphics and Visualization, pp. 25–32 (2014). https://doi.org/10.2312/pgv.20141081

  12. Zhao, Y., Belcour, L., Nowrouzezahrai, D.: View-dependent radiance caching. In: Proceedings of the Graphics Interface (2019). https://doi.org/10.20380/GI2019.22

  13. Müller, T., Rousselle, F., Novák, J., Keller, A.: Real-time neural radiance caching for path tracing. ACM Trans. Graph. (Proc. SIGGRAPH) 40(4) (2021) https://doi.org/10.1145/3450626.3459812

  14. Clarberg, P., Akenine-Moeller, T.: Exploiting visibility correlation in direct illumination. In: Computer Graphics Forum (Proc. EGSR), pp. 1125–1136 (2008). https://doi.org/10.1111/j.1467-8659.2008.01250.x

  15. Georgiev, I., Krivánek, J., Popov, S., Slusallek, P.: Importance caching for complex illumination. Comput. Graphics Forum (Proc. Eurographics) 31(2), 701–710 (2012) https://doi.org/10.1111/j.1467-8659.2012.03049.x

  16. Yoshida, H., Nabata, K., Iwasaki, K., Dobashi, Y., Nishita, T.: Adaptive importance caching for many-light rendering. J. WSCG 23(1), 65–71 (2015)

    Google Scholar 

  17. Ou, J., Pellacini, F.: LightSlice: Matrix slice sampling for the many-lights problem. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 30(6) (2011) https://doi.org/10.1145/2070781.2024213

  18. Wu, Y.-T., Chuang, Y.-Y.: VisibilityCluster: Average directional visibility for many-light rendering. IEEE Trans. Vis. Comput. Gr. 19(9), 1566–1578 (2013). https://doi.org/10.1109/TVCG.2013.21

    Article  Google Scholar 

  19. Wu, Y.-T., Li, T.-M., Lin, Y.-H., Chuang, Y.-Y.: Dual-matrix sampling for scalable translucent material rendering. IEEE Trans. Visual Comput. Gr. 21(3), 363–374 (2015). https://doi.org/10.1109/TVCG.2014.2385059

    Article  Google Scholar 

  20. Vévoda, P., Kondapaneni, I., Křivánek, J.: Bayesian online regression for adaptive direct illumination sampling. ACM Trans. Graph. (Proc. SIGGRAPH) 37(4) (2018) https://doi.org/10.1145/3197517.3201340

  21. Andersson, P., Nilsson, J., Shirley, P., Akenine-Möller, T.: Visualizing errors in rendered high dynamic range images. In: Eurographics Short Papers (2021). https://doi.org/10.2312/egs.20211015

  22. Keller, A.: Instant radiosity. In: Proceedings of the SIGGRAPH, pp. 49–56 (1997). https://doi.org/10.1145/258734.258769

  23. Jensen, H.W.: Global illumination using photon maps. In: Rendering Techniques, pp. 21–30 (1996). https://doi.org/10.1007/978-3-7091-7484-5_3

  24. Silvennoinen, A., Lehtinen, J.: Real-time global illumination by precomputed local reconstruction from sparse radiance probes. ACM Trans. Graph. 36(6) (2017) https://doi.org/10.1145/3130800.3130852

  25. Jarosz, W., Donner, C., Zwicker, M., Jensen, H.W.: Radiance caching for participating media. ACM Trans. Graph. 27(1) (2008) https://doi.org/10.1145/1330511.1330518

  26. Marco, J., Jarabo, A., Jarosz, W., Gutierrez, D.: Second-order occlusion-aware volumetric radiance caching. ACM Trans. Graph. 37(2) (2018) https://doi.org/10.1145/3185225

  27. Dubouchet, R.A., Belcour, L., Nowrouzezahrai, D.: Frequency based radiance cache for rendering animations. In: Computer Graphics Forum (Proc. EGSR) (2017). https://doi.org/10.2312/sre.20171193

  28. Patry, J., Wright, D., Halen, H., Hayward, K., Brinck, A., Bei, X.: Advances in real-time rendering in games, Part 2. SIGGRAPH Course (2021). https://advances.realtimerendering.com/s2021/

  29. McLaren, J.: The Technology of The Tomorrow Children. Game Developers Conference (GDC) (2015). https://www.gdcvault.com/play/1022428/The-Technology-of-The-Tomorrow

  30. Bitterli, B., Wyman, C., Pharr, M., Shirley, P., Lefohn, A., Jarosz, W.: Spatiotemporal reservoir resampling for real-time ray tracing with dynamic direct lighting. ACM Trans. Graph. (Proc. SIGGRAPH) 39(4) (2020) https://doi.org/10.1145/3386569.3392481

  31. Lin, D., Kettunen, M., Bitterli, B., Pantaleoni, J., Yuksel, C., Wyman, C.: Generalized resampled importance sampling: Foundations of restir. ACM Trans. Graph. (Proc. SIGGRAPH) 41(4) (2022) https://doi.org/10.1145/3528223.3530158

  32. Clarberg, P.: Fast equal-area mapping of the (Hemi)sphere using SIMD. J. Graphics Tools 13(3), 53–68 (2008). https://doi.org/10.1080/2151237X.2008.10129263

    Article  Google Scholar 

  33. Pharr, M., Jakob, W., Humphreys, G.: Physically Based Rendering: From Theory to Implementation, 3rd edn., p. 1266. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2016)

    Google Scholar 

  34. Bitterli, B.: Rendering resources. https://benedikt-bitterli.me/resources/ (2016)

  35. McGuire, M.: Computer Graphics Archive. https://casual-effects.com/data

Download references

Acknowledgements

We thank the anonymous reviewers for their valuable comments, and the creators or providers of the models and textures used in this paper: Staircase, CornellBox, DiningRoom, Bathroom, and Kitchen, via Benedikt Bitterli’s rendering resources [34]; CrytekSponza, Conference, and Sibenik from McGuire Computer Graphics Archive [35]; This work was supported in part by the National Science and Technology Council (NSTC) under grants 111-2222-E-305-001-MY2 and JSPS Grant-in-Aid JP23K16921.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Ting Wu.

Ethics declarations

Conflicts of Interest

The following are potential conflicts of interest: \(\bullet \) Yung-Yu Chuang (https://www.csie.ntu.edu.tw/~cyy/) \(\bullet \) Tzu-Mao Li (https://cseweb.ucsd.edu/~tzli/)

Research Involving Human Participants and/or Animals

This research did not involve human participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, YT., Shen, IC. Improving cache placement for efficient cache-based rendering. Vis Comput (2024). https://doi.org/10.1007/s00371-023-03231-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00371-023-03231-z

Keywords

Navigation