Skip to main content

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12346))

Included in the following conference series:

Abstract

We present a method that achieves state-of-the-art results for synthesizing novel views of complex scenes by optimizing an underlying continuous volumetric scene function using a sparse set of input views. Our algorithm represents a scene using a fully-connected (non-convolutional) deep network, whose input is a single continuous 5D coordinate (spatial location (xyz) and viewing direction \((\theta ,\phi )\)) and whose output is the volume density and view-dependent emitted radiance at that spatial location. We synthesize views by querying 5D coordinates along camera rays and use classic volume rendering techniques to project the output colors and densities into an image. Because volume rendering is naturally differentiable, the only input required to optimize our representation is a set of images with known camera poses. We describe how to effectively optimize neural radiance fields to render photorealistic novel views of scenes with complicated geometry and appearance, and demonstrate results that outperform prior work on neural rendering and view synthesis. View synthesis results are best viewed as videos, so we urge readers to view our supplementary video for convincing comparisons.

B. M. Pratul, P. Srinivasan and M. Tancik: Authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buehler, C., Bosse, M., McMillan, L., Gortler, S., Cohen, M.: Unstructured lumigraph rendering. In: SIGGRAPH (2001)

    Google Scholar 

  2. Chang, A.X., et al.: ShapeNet: an information-rich 3D model repository. arXiv:1512.03012 (2015)

  3. Chen, W., et al.: Learning to predict 3D objects with an interpolation-based differentiable renderer. In: NeurIPS (2019)

    Google Scholar 

  4. Cohen, M., Gortler, S.J., Szeliski, R., Grzeszczuk, R., Szeliski, R.: The lumigraph. In: SIGGRAPH (1996)

    Google Scholar 

  5. Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In: SIGGRAPH (1996)

    Google Scholar 

  6. Davis, A., Levoy, M., Durand, F.: Unstructured light fields. In: Eurographics (2012)

    Google Scholar 

  7. Debevec, P., Taylor, C.J., Malik, J.: Modeling and rendering architecture from photographs: a hybrid geometry-and image-based approach. In: SIGGRAPH (1996)

    Google Scholar 

  8. Flynn, J., et al.: DeepView: view synthesis with learned gradient descent. In: CVPR (2019)

    Google Scholar 

  9. Genova, K., Cole, F., Maschinot, A., Sarna, A., Vlasic, D., Freeman, W.T.: Unsupervised training for 3D morphable model regression. In: CVPR (2018)

    Google Scholar 

  10. Genova, K., Cole, F., Sud, A., Sarna, A., Funkhouser, T.: Local deep implicit functions for 3D shape. In: CVPR (2020)

    Google Scholar 

  11. Henzler, P., Mitra, N.J., Ritschel, T.: Learning a neural 3D texture space from 2D exemplars. In: CVPR (2020)

    Google Scholar 

  12. Henzler, P., Rasche, V., Ropinski, T., Ritschel, T.: Single-image tomography: 3D volumes from 2D cranial X-rays. In: Eurographics (2018)

    Google Scholar 

  13. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)

    Article  Google Scholar 

  14. Jiang, C., Sud, A., Makadia, A., Huang, J., Nießner, M., Funkhouser, T.: Local implicit grid representations for 3D scenes. In: CVPR (2020)

    Google Scholar 

  15. Kajiya, J.T., Herzen, B.P.V.: Ray tracing volume densities. Comput. Graph. (SIGGRAPH) 18(3), 165–174 (1984)

    Article  Google Scholar 

  16. Kar, A., Häne, C., Malik, J.: Learning a multi-view stereo machine. In: NeurIPS (2017)

    Google Scholar 

  17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  18. Kutulakos, K.N., Seitz, S.M.: A theory of shape by space carving. Int. J. Comput. Vis. 1, 307–314 (2000)

    MATH  Google Scholar 

  19. Levoy, M.: Efficient ray tracing of volume data. ACM Trans. Graph. 9(3), 245–261 (1990)

    Article  Google Scholar 

  20. Levoy, M., Hanrahan, P.: Light field rendering. In: SIGGRAPH (1996)

    Google Scholar 

  21. Li, T.M., Aittala, M., Durand, F., Lehtinen, J.: Differentiable Monte Carlo ray tracing through edge sampling. ACM Trans. Graph. (SIGGRAPH Asia) 37(6), 1–11 (2018)

    Google Scholar 

  22. Liu, S., Li, T., Chen, W., Li, H.: Soft rasterizer: a differentiable renderer for image-based 3D reasoning. In: ICCV (2019)

    Google Scholar 

  23. Lombardi, S., Simon, T., Saragih, J., Schwartz, G., Lehrmann, A., Sheikh, Y.: Neural volumes: learning dynamic renderable volumes from images. ACM Trans. Graph. (SIGGRAPH) (2019)

    Google Scholar 

  24. Loper, M.M., Black, M.J.: OpenDR: an approximate differentiable renderer. In: ECCV (2014)

    Google Scholar 

  25. Max, N.: Optical models for direct volume rendering. IEEE Trans. Visual. Comput. Graph. 1(2), 99–108 (1995)

    Article  Google Scholar 

  26. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: CVPR (2019)

    Google Scholar 

  27. Mildenhall, B., et al.: Local light field fusion: practical view synthesis with prescriptive sampling guidelines. ACM Trans. Graph. (SIGGRAPH) 38(4), 1–14 (2019)

    Article  Google Scholar 

  28. Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Differentiable volumetric rendering: learning implicit 3D representations without 3D supervision. In: CVPR (2019)

    Google Scholar 

  29. Nimier-David, M., Vicini, D., Zeltner, T., Jakob, W.: Mitsuba 2: a retargetable forward and inverse renderer. ACM Trans. Graph. (SIGGRAPH Asia) 38(6), 1–17 (2019)

    Article  Google Scholar 

  30. Oechsle, M., Mescheder, L., Niemeyer, M., Strauss, T., Geiger, A.: Texture fields: learning texture representations in function space. In: ICCV (2019)

    Google Scholar 

  31. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: CVPR (2019)

    Google Scholar 

  32. Penner, E., Zhang, L.: Soft 3D reconstruction for view synthesis. ACM Trans. Graph. (SIGGRAPH Asia) 36(6), 1–11 (2017)

    Article  Google Scholar 

  33. Porter, T., Duff, T.: Compositing digital images. Comput. Graph (SIGGRAPH) (1984)

    Google Scholar 

  34. Rahaman, N., et al.: On the spectral bias of neural networks. In: ICML (2018)

    Google Scholar 

  35. Rainer, G., Ghosh, A., Jakob, W., Weyrich, T.: Unified neural encoding of BTFs. Comput. Graph. Forum (Eurographics) (2020)

    Google Scholar 

  36. Rainer, G., Jakob, W., Ghosh, A., Weyrich, T.: Neural BTF compression and interpolation. Comput. Graph. Forum (Eurographics) 38(2), 235–244 (2019)

    Article  Google Scholar 

  37. Ren, P., Wang, J., Gong, M., Lin, S., Tong, X., Guo, B.: Global illumination with radiance regression functions. ACM Trans. Graph. 32(4), 1–12 (2013)

    Article  Google Scholar 

  38. Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: CVPR (2016)

    Google Scholar 

  39. Seitz, S.M., Dyer, C.R.: Photorealistic scene reconstruction by voxel coloring. Int. J. Comput. Vis. 35, 151–173 (1999). https://doi.org/10.1023/A:1008176507526

  40. Sitzmann, V., Thies, J., Heide, F., Nießner, M., Wetzstein, G., Zollhöfer, M.: DeepVoxels: learning persistent 3D feature embeddings. In: CVPR (2019)

    Google Scholar 

  41. Sitzmann, V., Zollhoefer, M., Wetzstein, G.: Scene representation networks: continuous 3D-structure-aware neural scene representations. In: NeurIPS (2019)

    Google Scholar 

  42. Srinivasan, P.P., Tucker, R., Barron, J.T., Ramamoorthi, R., Ng, R., Snavely, N.: Pushing the boundaries of view extrapolation with multiplane images. In: CVPR (2019)

    Google Scholar 

  43. Stanley, K.O.: Compositional pattern producing networks: a novel abstraction of development. Genet. Program. Evolvable Mach. 8, 131–162 (2007). https://doi.org/10.1007/s10710-007-9028-8

  44. Szeliski, R., Golland, P.: Stereo matching with transparency and matting. In: ICCV (1998)

    Google Scholar 

  45. Tulsiani, S., Zhou, T., Efros, A.A., Malik, J.: Multi-view supervision for single-view reconstruction via differentiable ray consistency. In: CVPR (2017)

    Google Scholar 

  46. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)

    Google Scholar 

  47. Waechter, M., Moehrle, N., Goesele, M.: Let there be color! large-scale texturing of 3D reconstructions. In: ECCV (2014)

    Google Scholar 

  48. Wood, D.N., et al.: Surface light fields for 3D photography. In: SIGGRAPH (2000)

    Google Scholar 

  49. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)

    Google Scholar 

  50. Zhong, E.D., Bepler, T., Davis, J.H., Berger, B.: Reconstructing continuous distributions of 3D protein structure from cryo-EM images. In: ICLR (2020)

    Google Scholar 

  51. Zhou, T., Tucker, R., Flynn, J., Fyffe, G., Snavely, N.: Stereo magnification: learning view synthesis using multiplane images. ACM Trans. Graph. (SIGGRAPH) (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Mildenhall .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1880 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R. (2020). NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12346. Springer, Cham. https://doi.org/10.1007/978-3-030-58452-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58452-8_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58451-1

  • Online ISBN: 978-3-030-58452-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics