Skip to main content
Log in

A weighted parameter identification PDE-constrained optimization for inverse image denoising problem

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper treats the inverse denoising problem which aims to compute simultaneously the clean image and the weighting parameter \(\lambda \). The formulated denoising problem is posed using a partial differential equation (PDE)-constrained optimization model. The minimized function imposes a Tikhonov regularization on the estimated \(\lambda \), while the proposed PDE encompasses two high-order diffusive tensors. The particularity of this PDE is that it does not over-smooth homogeneous regions and preserves sharp edges during the denoising process, even if its degree is high. A new optimization procedure to compute the weighting parameter is also elaborated inspired from the nonsmooth Primal-dual algorithm. This leads to control of the diffusivity rate generated by the two diffusive operators. Finally, expressive results show that the computed spatial parameter \(\lambda \) leads to obtain a pleasant clean image. This is also confirmed by numerous comparisons with other competitive denoising approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Borcea, L., Kang, H., Liu, H., Uhlmann, G.: Inverse problems and imaging, Vol. 44 of Panoramas et Synthèses [Panoramas and Syntheses], Société Mathématique de France, Paris, 2015, lectures from the workshop held at the Institut Henri Poincaré, Paris, February 20–22 (2013), Edited by H. Ammari and J. Garnier

  2. Kabanikhin, S.I.: Inverse and Ill-Posed Problems, Vol. 55 of Inverse and Ill-Posed Problems Series. Walter de Gruyter GmbH & Co. KG, Berlin (2012). theory and applications

    MATH  Google Scholar 

  3. Bergam, A., Chakib, A., Nachaoui, A., Nachaoui, M.: Adaptive mesh techniques based on a posteriori error estimates for an inverse Cauchy problem. Appl. Math. Comput. 346, 865–878 (2019)

    MathSciNet  MATH  Google Scholar 

  4. Chakib, A., Nachaoui, A., Nachaoui, M.: Approximation and numerical realization of an optimal design welding problem. Numer. Methods Partial Differ. Equ. 29(5), 1563–1586 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Lyaqini, S., Quafafou, M., Nachaoui, M., Chakib, A.: Supervised learning as an inverse problem based on non-smooth loss function. Knowl. Inf. Syst. 62, 3039–3058 (2020)

  6. Hadamard, J.: Lectures on Cauchy’s Problem in Linear Partial Differential Equations. Dover Publications, New York (1953)

    Book  MATH  Google Scholar 

  7. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems, Vol. 375 of Mathematics and Its Applications. Kluwer Academic Publishers Group, Dordrecht (1996)

    Book  MATH  Google Scholar 

  8. Hintermüller, M., Rautenberg, C.N., Wu, T., Langer, A.: Optimal selection of the regularization function in a weighted total variation model. part ii: Algorithm, its analysis and numerical tests. J. Math. Imaging Vis. 59(3), 515–533 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Berdawood, K.A., Nachaoui, A., Saeed, R., Nachaoui, M., Aboud, F.: An alternating procedure with dynamic relaxation for Cauchy problems governed by the modified Helmholtz equation. Adv. Math. Models Appl. 5(1), 131–139 (2020)

    MATH  Google Scholar 

  10. Nachaoui, A., Nachaoui, M., Chakib, A., Hilal, M.A.: Some novel numerical techniques for an inverse Cauchy problem. J. Comput. Appl. Math. 381, 113030, 21 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. Afraites, L., Hadri, A., Laghrib, A.: A denoising model adapted for impulse and gaussian noises using a constrained-pde. Inverse Prob. 36(2), 025006 (2020)

  12. Laghrib, A., Chakib, A., Hadri, A., Hakim, A.: A nonlinear fourth-order PDE for multi-frame image super-resolution enhancement. Discrete Cont. Dyn. Syst. B 25(1), 415 (2020)

    MathSciNet  MATH  Google Scholar 

  13. Kallel, M., Moakher, M., Theljani, A.: The Cauchy problem for a nonlinear elliptic equation: Nash-game approach and application to image inpainting. Inverse Probl. Imaging 9(3), 853–874 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Coupe, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., Barillot, C.: An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Trans. Med. Imaging 27(4), 425–441 (2008)

    Article  Google Scholar 

  15. Dasgupta, A., Chakraborty, S., Routray, A.: A two-stage framework for denoising electrooculography signals. Biomed. Signal Process. Control 31, 231–237 (2017)

    Article  Google Scholar 

  16. Beckouche, S., Starck, J.-L., Fadili, J.: Astronomical image denoising using dictionary learning. Astron. Astrophys. 556, A132 (2013)

    Article  Google Scholar 

  17. Bertero, M., Boccacci, P., Robberto, M.: Inversion of second-difference operators with application to infrared astronomy. Inverse Prob. 19(6), 1427 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Aubert, G., Aujol, J.-F.: A variational approach to removing multiplicative noise. SIAM J. Appl. Math. 68(4), 925–946 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Getreuer, P., Tong, M., Vese, L.A.: A variational model for the restoration of MR images corrupted by blur and Rician noise. In: International Symposium on Visual Computing, pp. 686–698 (2011)

  20. Holler, G., Kunisch, K., Barnard, R.C.: A bilevel approach for parameter learning in inverse problems. Inverse Probl. 34(11), 115012, 28 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kunisch, K., Pock, T.: A bilevel optimization approach for parameter learning in variational models. SIAM J. Imaging Sci. 6(2), 938–983 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Langer, A.: Automated parameter selection for total variation minimization in image restoration. J. Math. Imaging Vis. 57, 239–268 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Antil, H., Di, Z.W., Khatri, R.: Bilevel optimization, deep learning and fractional Laplacian regularization with applications in tomography. Inverse Probl. 36 (6), 064001 (2020)

  24. Nachaoui, M.: Parameter learning for combined first and second order total variation for image reconstruction. Adv. Math. Models Appl. 5(1), 53–69 (2020)

    Google Scholar 

  25. Dempe, S., Harder, F., Mehlitz, P., Wachsmuth, G.: Solving inverse optimal control problems via value functions to global optimality. J. Global Optim. 74(2), 297–325 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Konstantin, P., Mattias, G.: Necessary conditions for a class of bilevel optimal control problems exploiting the value function. Pure Appl. Funct. Anal. 1(4), 505–524 (2016)

    MathSciNet  MATH  Google Scholar 

  27. Lin, G.-H., Xu, M., Ye, J.J.: On solving simple bilevel programs with a nonconvex lower level program. Math. Program. 144(1–2, Ser. A), 277–305 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mitsos, A., Lemonidis, P., Barton, P.I.: Global solution of bilevel programs with a nonconvex inner program. J. Global Optim. 42(4), 475–513 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhu, X., Guo, P.: Approaches to four types of bilevel programming problems with nonconvex nonsmooth lower level programs and their applications to newsvendor problems. Math. Methods Oper. Res. 86(2), 255–275 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ding, K., Chen, W., Wu, X.: Optimum inpainting for depth map based on l 0 total variation. Vis. Comput. 30(12), 1311–1320 (2014)

    Article  Google Scholar 

  33. Van Chung, C., De los Reyes, J., Schönlieb, C.: Learning optimal spatially-dependent regularization parameters in total variation image denoising. Inverse Probl. 33(7), 074005 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. De los Reyes, J.C., Schönlieb, C.-B.: Image denoising: learning the noise model via nonsmooth PDE-constrained optimization. Inverse Probl. Imaging 7(4), 1183–1214 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Calatroni, L., Papafitsoros, K.: Analysis and automatic parameter selection of a variational model for mixed gaussian and salt-and-pepper noise removal. Inverse Probl. 35(11), 114001 (2019)

  36. De los Reyes, J.C., Schönlieb, C.-B., Valkonen, T.: Bilevel parameter learning for higher-order total variation regularisation models. J. Math. Imaging Vis. 57(1), 1–25 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hintermüller, M., Papafitsoros, K., Rautenberg, C.N., Sun, H.: Dualization and automatic distributed parameter selection of total generalized variation via bilevel optimization (2020). arXiv:2002.05614

  38. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Clason, C., Valkonen, T.: Primal-dual extragradient methods for nonlinear nonsmooth PDE-constrained optimization. SIAM J. Optim. 27(3), 1314–1339 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhang, X., Burger, M., Osher, S.: A unified primal-dual algorithm framework based on Bregman iteration. J. Sci. Comput. 46(1), 20–46 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. El Mourabit, I., El Rhabi, M., Hakim, A., Laghrib, A., Moreau, E.: A new denoising model for multi-frame super-resolution image reconstruction. Signal Process. 132, 51–65 (2017)

  42. Elad, M.: On the origin of the bilateral filter and ways to improve it. IEEE Trans. Image Process. 11(10), 1141–1151 (2002)

    Article  MathSciNet  Google Scholar 

  43. Jin, B., Zhou, Z.: An inverse potential problem for subdiffusion: stability and reconstruction. Inverse Probl. 37(1), 015006 (2020)

  44. Zeghal, A.: Existence results for inverse problems associated with a nonlinear parabolic equation. J. Math. Anal. Appl. 272(1), 240–248 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  45. Kabanikhin, S., Kowar, R., Scherzer, O.: On the landweber iteration for the solution of a parameter identification problem in a hyperbolic partial differential equation of second order. J. Ill-Posed Probl. 6(5), 403–430 (1998)

  46. De los Reyes, J.C., Schönlieb, C.-B.: Image denoising: learning the noise model via nonsmooth PDE-constrained optimization. Inverse Probl. Imaging 7(4), 1183–1214 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. Clason, C., Jin, B.: A semismooth newton method for nonlinear parameter identification problems with impulsive noise. SIAM J. Imaging Sci. 5(2), 505–536 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  48. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints, vol. 23. Springer, Berlin (2008)

    MATH  Google Scholar 

  49. Liu, X., Huang, L., Guo, Z.: Adaptive fourth-order partial differential equation filter for image denoising. Appl. Math. Lett. 24(8), 1282–1288 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  50. Liu, X., Lai, C.-H., Pericleous, K.A.: A fourth-order partial differential equation denoising model with an adaptive relaxation method. Int. J. Comput. Math. 92(3), 608–622 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhang, J., Wei, Z., Xiao, L.: Adaptive fractional-order multi-scale method for image denoising. J. Math. Imaging Vis. 43(1), 39–49 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  52. Hintermüller, M., Rautenberg, C.N.: Optimal selection of the regularization function in a weighted total variation model. Part i: modelling and theory. J. Math. Imaging Vis. 59(3), 498–514 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  53. De los Reyes, J.C., Schönlieb, C.-B., Valkonen, T.: Bilevel parameter learning for higher-order total variation regularisation models. J. Math. Imaging Vis. 57(1), 1–25 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are thankful to the referees for the corrections and useful advices that have improved this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lekbir Afraites or Mourad Nachaoui.

Ethics declarations

Conflict of interest

Not available.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We start by computing the sensitivity \(X^1\) of the solution X with respect to \(\lambda \) in the direction h. We obtain that \(X^1\) is solution of the following problem:

$$\begin{aligned} {\left\{ \begin{array}{ll} \frac{\partial X^1}{\partial t}+\nabla ^2.\left( \lambda \nabla ^2 X^1\right) -\nabla .\left( (1-\lambda ) D(J^{\sigma }_{\rho }(\nabla X))\nabla X^1\right) -\nabla .\left( (1-\lambda ) D^*(J^{\sigma }_{\rho }(\nabla X))X^1\nabla X \right) \\ = -\nabla ^2.\left( h \nabla ^2 X\right) -\nabla .\left( h D(J^{\sigma }_{\rho }(\nabla X))\nabla X\right) , \;\;\textit{in}\;\; ]0,T[\times \Omega ,\\ \langle D(J^{\sigma }_{\rho }(\nabla X^1))\nabla X+ D^*(J^{\sigma }_{\rho }(\nabla X))X^1 \nabla X,\nu \rangle =0,\;\;\textit{on}\;\; ]0,T[\times \partial \Omega ,\\ X^1(t,x)=0, \,\,on \,\, ]0,T[\times \partial \Omega ,\\ X^1(0,x)=0,\,\,\textit{in}\,\,\Omega ,\\ \end{array}\right. } \end{aligned}$$
(23)

where \(D^*(J^\sigma _\rho (\nabla X))\) is the derivative of \(D(J^\sigma _\rho (\nabla X)) \) with respect to state X.

To prove the result (16), we take \( \phi \in L^2(0,T; H^2_0(\Omega ))\) as a function test in the variational form of system (23) and (17), which give:

$$\begin{aligned}&\,&\int _{0}^T\langle \frac{\partial X^1}{\partial t},\phi \rangle +\int _{0}^T\int _{\Omega } \lambda \nabla ^2 X^1 \nabla ^2 \phi \nonumber \\&\quad +\int _{0}^T\int _{\Omega } (1-\lambda ) D(J^{\sigma }_{\rho }(\nabla X)) \nabla X^1 \nabla \phi \nonumber \\+ & {} \int _{0}^T\int _{\Omega } (1-\lambda ) D^*(J^{\sigma }_{\rho }(\nabla X))X^1\nabla X \nabla \phi \nonumber \\&\quad = - \int _{0}^T\int _{\Omega } h \nabla ^2 X \nabla \phi \nonumber \\&\qquad +\int _{0}^T\int _{\Omega } h D(J^{\sigma }_{\rho }(\nabla X))\nabla X \nabla \phi \end{aligned}$$
(24)

and

$$\begin{aligned}&\int _{0}^T\langle -\frac{\partial P}{\partial t},\phi \rangle + \int _{0}^T\int _{\Omega } \lambda \nabla ^2 P \nabla ^2 \phi \nonumber \\&\quad + \int _{\Omega }(1-\lambda ) D(J^{\sigma }_{\rho }(\nabla X))\nabla P \nabla \phi \nonumber \\&\quad +\int _{0}^T\int _{\Omega }(1-\lambda ) D^*(J^\sigma _\rho (\nabla X)) \nabla X \nabla P \phi =0 \end{aligned}$$
(25)

Taking \(\phi =P\) in Eq. (24) and \(\phi =X^1\) in Eq. (25) and use the formula

$$\begin{aligned} \displaystyle \int _0^T\langle \frac{\partial X^1}{\partial t}, P \rangle =\int _{0}^T\langle -\frac{\partial P}{\partial t},X^1 \rangle + \displaystyle \int _{\Omega } X^1(x,T)P(x,T)dx, \end{aligned}$$

it immediately shows that:

$$\begin{aligned}&\int _{\Omega } X^1(x,T)P(x,T)dx \\&\quad =- \int _{0}^{T} \int _{\Omega } h \nabla ^2 X \nabla ^2 P dt\\&\qquad + \int _{0}^T \int _{\Omega } h D(J^\sigma _\rho (\nabla X)) \nabla X \nabla P dxdt. \end{aligned}$$

To finish this proof, we use the proposed notation \(X^1(T)=\mathcal {S}'(\lambda )h\) and \(p(T)=W\), then we have

$$\begin{aligned}&\displaystyle \langle \mathcal {S}'(\lambda )h ,W\rangle \\&\quad = -\langle \int _{0}^T \big ( \nabla ^2 X \nabla ^2 P - D(J^\sigma _\rho (\nabla X)) \nabla X \nabla P \big ) dt,h\rangle . \end{aligned}$$

which completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afraites, L., Hadri, A., Laghrib, A. et al. A weighted parameter identification PDE-constrained optimization for inverse image denoising problem. Vis Comput 38, 2883–2898 (2022). https://doi.org/10.1007/s00371-021-02162-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02162-x

Keywords

Navigation