Skip to main content
Log in

Tensor-guided learning for image denoising using anisotropic PDEs

  • Research
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

In this article, we introduce an advanced approach for enhanced image denoising using an improved space-variant anisotropic Partial Differential Equation (PDE) framework. Leveraging Weickert-type operators, this method relies on two critical parameters: \(\lambda \) and \(\theta \), defining local image geometry and smoothing strength. We propose an automatic parameter estimation technique rooted in PDE-constrained optimization, incorporating supplementary information from the original clean image. By combining these components, our approach achieves superior image denoising, pushing the boundaries of image enhancement methods. We employed a modified Alternating Direction Method of Multipliers (ADMM) procedure for numerical optimization, demonstrating its efficacy through thorough assessments and affirming its superior performance compared to alternative denoising methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Algorithm 1
Algorithm 2
Algorithm 3
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data will be available on reasonable request.

Notes

  1. https://imagej.net/plugins/n2v.

  2. https://github.com/pelletierlab/Noise2Fast.

  3. https://github.com/SSinyu/CT-Denoising-Review/blob/master/README.md.

References

  1. Afraites, L., Hadri, A., Laghrib, A., Nachaoui, M.: A weighted parameter identification PDE-constrained optimization for inverse image denoising problem. Vis. Comput. 38(8), 2883–2898 (2022)

    Article  Google Scholar 

  2. Boutaayamou, I., Hadri, A., Laghrib, A.: An optimal bilevel optimization model for the generalized total variation and anisotropic tensor parameters selection. Appl. Math. Comput. 438, 127510 (2023)

    MathSciNet  Google Scholar 

  3. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  Google Scholar 

  4. Brezis, H.: Analyse Fonctionnelle. Masson, Paris (1983)

    Google Scholar 

  5. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011). (Publisher: Springer)

    Article  MathSciNet  Google Scholar 

  6. Chatterjee, P., Milanfar, P.: Patch-based near-optimal image denoising. IEEE Trans. Image Process. 21(4), 1635–1649 (2012)

    Article  MathSciNet  Google Scholar 

  7. Chen, G., Xie, W., Zhao, Y.: Wavelet-based denoising: a brief review. In: 2013 fourth international conference on intelligent control and information processing (ICICIP), pp. 570–574. IEEE, (2013)

  8. Chen, Y., Li, J., Zhou, Y.: Hyperspectral image denoising by total variation-regularized bilinear factorization. Signal Process. 174, 107645 (2020)

    Article  Google Scholar 

  9. Chen, Y., Xu, T., Zhao, X., Zeng, H., Xu, Y., Chen, J.: Asymmetry total variation and framelet regularized nonconvex low-rank tensor completion. Signal Process. 206, 108901 (2023)

    Article  Google Scholar 

  10. Clason, C., Valkonen, T.: Primal-dual extragradient methods for nonlinear nonsmooth PDE-constrained optimization. SIAM J. Optim. 27(3), 1314–1339 (2017). (Publisher: SIAM)

    Article  MathSciNet  Google Scholar 

  11. Cui, Y., Yin, L., Zhou, H., Gao, M., Tang, X., Deng, Y., Liang, Y.: Compressed sensing based on L1 and TGV regularization for low-light-level images denoising. Digital Signal Process. 136, 103975 (2023)

    Article  Google Scholar 

  12. Dawant, B.M., Zijdenbos, A.P.: Image segmentation. In: De, T. (ed.) Handbook of Medical Imaging, vol. 2, pp. 71–127. SPIE Press, Bellingham (2000)

    Google Scholar 

  13. El Mourabit, I., El Rhabi, M., Hakim, A., Laghrib, A., Moreau, E.: A new denoising model for multi-frame super-resolution image reconstruction. Signal Process. 132, 51–65 (2017)

    Article  Google Scholar 

  14. Gao, J., Sun, J., Yao, W., Guo, Z.: A novel fractional-order reaction diffusion system for the multiplicative noise removal. Stud. Appl. Math. 147(2), 421–447 (2021)

    Article  MathSciNet  Google Scholar 

  15. Ghose, S., Singh, N., Singh, P.: Image denoising using deep learning: convolutional neural network. In: 2020 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence), pp. 511–517, (2020)

  16. Glowinski, R., Song, Y., Yuan, X.: An ADMM numerical approach to linear parabolic state constrained optimal control problems. Numerische Mathematik 144, 931–966 (2020)

    Article  MathSciNet  Google Scholar 

  17. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, pp. 653–658. Pearson education India (2006)

    Google Scholar 

  18. Hadri, A., Afraites, L., Laghrib, A., Nachaoui, M.: A novel image denoising approach based on a non-convex constrained PDE: application to ultrasound images. SIViP 15(5), 1057–1064 (2021)

    Article  Google Scholar 

  19. Hadri, A., Laghrib, A., El Mourabit, I.: A new learning space-variant anisotropic constrained-PDE for image denoising. Appl. Math. Model. 125, 139–163 (2023)

    Article  MathSciNet  Google Scholar 

  20. He, N., Wang, J.-B., Zhang, L.-L., Lu, K.: An improved fractional-order differentiation model for image denoising. Signal Process. 112, 180–188 (2015)

    Article  Google Scholar 

  21. Jia, X., Liu, S., Feng, X., Zhang, L.: Focnet: a fractional optimal control network for image denoising. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 6054–6063, (2019)

  22. Jin, B., Zhou, Z.: An inverse potential problem for subdiffusion: stability and reconstruction. Inverse Prob. 37(1), 015006 (2020)

    Article  MathSciNet  Google Scholar 

  23. Kabanikhin, S.I., Kowar, R., Scherzer, O.: On the Landweber Iteration for the Solution of a Parameter Identification Problem in a Hyperbolic Partial Differential Equation of Second Order. Walter de Gruyter, Berlin (1998)

    Book  Google Scholar 

  24. Kawar, B., Elad, M, Ermon, S., Song, J.: Denoising diffusion restoration models, Oct. 2022. arXiv:2201.11793 [cs, eess]

  25. Kollem, S., Reddy, K.R.L., Rao, D.S.: A review of image denoising and segmentation methods based on medical images. Int. J. Mach. Learn. Comput. 9(3), 288–295 (2019)

    Article  Google Scholar 

  26. Krull, A., Buchholz, T.-O., Jug, F.: Noise2void-learning denoising from single noisy images. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 2129–2137, (2019)

  27. Lequyer, J., Philip, R., Sharma, A., Pelletier, L.: Noise2fast: fast self-supervised single image blind denoising. arXiv preprint arXiv:2108.10209, (2021)

  28. Lu, D., Weng, Q.: A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 28(5), 823–870 (2007)

    Article  Google Scholar 

  29. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, vol. 2, pp. 416–423, Vancouver, BC, Canada, (2001)

  30. Motwani, M.C., Gadiya, M.C., Motwani, R.C., Harris, F.C.: Survey of image denoising techniques. Proc. GSPX 27, 27–30 (2004)

    Google Scholar 

  31. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1(3), 127–239 (2014)

    Article  Google Scholar 

  32. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990). (Publisher: IEEE)

    Article  Google Scholar 

  33. Pitas, I., Venetsanopoulos, A.N.: Nonlinear Digital Filters. Springer, Boston (1990)

    Book  Google Scholar 

  34. Plessix, R.-E.: A review of the adjoint-state method for computing the gradient of a functional with geophysical applications. Geophys. J. Int. 167(2), 495–503 (2006)

    Article  Google Scholar 

  35. Shao, J., Guo, Z., Shan, X., Zhang, C., Wu, B.: A new non-divergence diffusion equation with variable exponent for multiplicative noise removal. Nonlinear Anal. Real World Appl. 56, 103166 (2020)

    Article  MathSciNet  Google Scholar 

  36. Song, J. L., Chen, M. J., Jiang, C., Huang, Y. X., Liu, Q., Meng, Y., Mo, W. Q., Dong, K. F., Jin F.: Research on image denoising method based on wavelet transform. In: 2018 37th Chinese Control Conference (CCC), pp. 7354–7358. IEEE, (2018)

  37. Song, Y., Yuan, X., Yue, H.: Implementation of the ADMM to parabolic optimal control problems with control constraints and beyond. arXiv preprint arXiv:2005.01582, (2020)

  38. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), pp. 839–846, Narosa Publishing House, Bombay, India, (1998)

  39. Wang, M., Zheng, S., Li, X., Qin, X.: A new image denoising method based on Gaussian filter. In: 2014 International Conference on information science, electronics and electrical engineering, vol. 1, pp.163–167. IEEE, (2014)

  40. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  41. Wang, Z., Liu, J., Xue, J.-H.: Joint sparse model-based discriminative K-SVD for hyperspectral image classification. Signal Process. 133, 144–155 (2017)

  42. Weickert, J.: Anisotropic Diffusion in Image Processing, vol. 1. Teubner, Stuttgart (1998)

  43. Wen, Y., Guo, Z., Yao, W., Yan, D., Sun, J.: Hybrid BM3D and PDE filtering for non-parametric single image denoising. Signal Process. 184, 108049 (2021)

  44. Wu, Y., Tracey, B., Natarajan, P., Noonan, J.P.: James-Stein type center pixel weights for non-local means image denoising. IEEE Signal Process. Lett. 20(4), 411–414 (2013)

    Article  Google Scholar 

  45. Yang, G., Burger, P., Firmin, D., Underwood, S.: Structure adaptive anisotropic image filtering. Image Vis. Comput. 14(2), 135–145 (1996)

    Article  Google Scholar 

  46. Zeghal, A.: Existence results for inverse problems associated with a nonlinear parabolic equation. J. Math. Anal. Appl. 272(1), 240–248 (2002). (Publisher: Elsevier)

    Article  MathSciNet  Google Scholar 

  47. Zhang, Y., Lin, H., Li, Y., Ma, H.: A patch based denoising method using deep convolutional neural network for seismic image. IEEE Access 7, 156883–156894 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank gratefully the reviewers for the pertinent remarks that improved this work.

Funding

This research was entirely funded by the institutions of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amine Laghrib.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Human or animal rights

Neither human participants nor animals are involved in this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We will show the adjoint equation of state, we consider the following Lagrangian functional defined by:

$$\begin{aligned}{} & {} \mathcal {L}(u,\theta , \lambda , T)=\mathcal {J}(\theta , \lambda , T)+\int _0^1\int _{\Omega }\frac{\partial u}{\partial t}p dx dt\nonumber \\{} & {} \nonumber \\{} & {} -T \int _0^1\int _{\Omega } div^2(\textbf{D}^{\lambda }_\theta \nabla ^2 u) p dx dt -T\int _0^1\nonumber \\{} & {} \int _{\Omega }div(\mathbf {\curlyvee }\nabla u)p dx dt. \end{aligned}$$
(37)

With p is the adjoint variable. By using the Green formula, we obtain

$$\begin{aligned}{} & {} \mathcal {L}(u,\theta , \lambda , T)=\mathcal {J}(\theta , \lambda ,T)\nonumber \\{} & {} +\int _0^1\int _{\Omega }\frac{\partial u}{\partial t}p dx dt-T \int _0^1\int _{\Omega } \textbf{D}^{\lambda }_\theta \nabla ^{2} u \nabla ^{2} p dx dt \nonumber \\{} & {} +T\int _0^1\int _{\Omega }\mathbf {\curlyvee }\nabla u \nabla p dx dt. \end{aligned}$$
(38)
  • We compute the variation of \(\mathcal {L}\) with respect to u, we get

    $$\begin{aligned} \langle \frac{\partial \mathcal {L} }{\partial u}, u' \rangle =&\langle \partial _{u}\mathcal {J}(\theta , \lambda , T),u' \rangle _{\Omega }+\int _0^1\int _{\Omega }\frac{\partial u'}{\partial t}p dx dt\\&-T\int _0^1\int _{\Omega }div\left( \textbf{D}^{\lambda }_\theta \nabla u' \right) \nabla ^{2}p dxdt\\&+T\int _0^1\int _{\Omega }\mathbf {\curlyvee }'u'\nabla u \nabla p dx dt\\&+T\int _0^1\int _{\Omega }\mathbf {\curlyvee } \nabla u' \nabla p dx dt. \end{aligned}$$

    Therefore,

    $$\begin{aligned}&\langle \frac{\partial \mathcal {L} }{\partial u}, u' \rangle =0 \Rightarrow \langle u(.,1)-Y_{0},u'\rangle _{\Omega }\\&-\langle \frac{\partial p}{\partial t},u' \rangle _{(0,1)\times \Omega }-T\langle div^{2}\left( \textbf{D}^{\lambda }_\theta \nabla ^2 p \right) ,u' \rangle _{(0,1)\times \Omega }\\&-T\langle div\left( \mathbf {\curlyvee } \nabla p \right) ,u'\rangle _{(0,1)\times \Omega }\\&+T\langle \mathbf {\curlyvee }'\nabla u \nabla p,u' \rangle _{(0,1)\times \Omega }=0. \end{aligned}$$

    Then, we deduce the system (30).

  • We compute the variation of \(\mathcal {L}\) with respect to \(\theta \), we get

    $$\begin{aligned}&\langle \frac{\partial \mathcal {L} }{\partial \theta }, \tilde{\theta }\rangle =\langle \partial _{\theta }\mathcal {J}(\theta , \lambda , T),\tilde{\theta } \rangle _{\Omega }\\&-T\int _0^1\int _{\Omega }\frac{\partial \textbf{D}^{\lambda }_\theta }{\partial \theta }\tilde{\theta } \nabla ^{2}u \nabla ^{2}p dx dt,\\&\langle \frac{\partial \mathcal {L} }{\partial \theta }, \tilde{\theta }\rangle =0 \Rightarrow \langle \partial _{\theta }\mathcal {J}(\theta , \lambda , T),\tilde{\theta } \rangle _{\Omega }\\&=T\langle \frac{\partial \textbf{D}^{\lambda }_\theta }{\partial \theta } \nabla ^{2}u \nabla ^{2}p,\tilde{\theta } \rangle _{(0,1)\times \Omega }. \end{aligned}$$

    Then,

    $$\begin{aligned} \partial _{\theta }\mathcal {J}=T\frac{\partial \textbf{D}^{\lambda }_\theta }{\partial \theta } \nabla ^{2}u \nabla ^{2}p. \end{aligned}$$
  • In the same manner we compute the variation of \(\mathcal {L}\) with respect to \(\lambda \), we obtain

    $$\begin{aligned} D_{\lambda } \mathcal {J} (\theta , \lambda ,T)=T\displaystyle \frac{\partial \textbf{D}_{\theta }^{\lambda }}{\partial \lambda }\nabla ^{2} u \nabla ^{2} p. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Limami, Fe., Hadri, A., Afraites, L. et al. Tensor-guided learning for image denoising using anisotropic PDEs. Machine Vision and Applications 35, 48 (2024). https://doi.org/10.1007/s00138-024-01532-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00138-024-01532-4

Keywords

Navigation