Skip to main content

Advertisement

Log in

Generative hyperelasticity with physics-informed probabilistic diffusion fields

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Many natural materials exhibit highly complex, nonlinear, anisotropic, and heterogeneous mechanical properties. Recently, it has been demonstrated that data-driven strain energy functions possess the flexibility to capture the behavior of these complex materials with high accuracy while satisfying physics-based constraints. However, most of these approaches disregard the uncertainty in the estimates and the spatial heterogeneity of these materials. In this work, we leverage recent advances in generative models to address these issues. We use as building block neural ordinary equations (NODE) that—by construction—create polyconvex strain energy functions, a key property of realistic hyperelastic material models. We combine this approach with probabilistic diffusion models to generate new samples of strain energy functions. This technique allows us to sample a vector of Gaussian white noise and translate it to NODE parameters thereby representing plausible strain energy functions. We extend our approach to spatially correlated diffusion resulting in heterogeneous material properties for arbitrary geometries. We extensively test our method with synthetic and experimental data on biological tissues and run finite element simulations with various degrees of spatial heterogeneity. We believe this approach is a major step forward including uncertainty in predictive, data-driven models of hyperelasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data, model parameters, and code associated with this study are available in a publich repository at https://github.com/tajtac/node_diffusion

References

  1. Lanir Y (2017) Multi-scale structural modeling of soft tissues mechanics and mechanobiology. J Elast 129(1–2):7–48

    Article  MathSciNet  Google Scholar 

  2. Jor JW, Parker MD, Taberner AJ, Nash MP, Nielsen PM (2013) Computational and experimental characterization of skin mechanics: identifying current challenges and future directions. Wiley Interdiscip Rev Syst Biol Med 5(5):539–556

    Article  Google Scholar 

  3. Jin H, Zhang E, Espinosa HD (2023) Recent advances and applications of machine learning in experimental solid mechanics: A review. Appl Mech Rev. https://doi.org/10.1115/1.4062966

    Article  Google Scholar 

  4. Dal H, Denli FA, Açan AK, Kaliske M (2023). Data-Driven Hyperelasticity - Part I: A Canonical Isotropic Formulation for Rubberlike Materials. https://doi.org/10.2139/ssrn.4508297

  5. Eghtesad A, Fuhg JN, Bouklas N (2023) NN-EVP: A physics informed neural network-based elasto-viscoplastic framework for predictions of grain size-aware flow response under large deformations. arXiv:2307.04301

  6. Rosenkranz M, Kalina KA, Brummund J, Kästner M (2023) A comparative study on different neural network architectures to model inelasticity. Int J Numer Methods Eng. https://doi.org/10.1002/nme.7319

    Article  MathSciNet  Google Scholar 

  7. Sacks MS, Motiwale S, Goodbrake C, Zhang W (2022) Neural Network Approaches for Soft Biological Tissue and Organ Simulations. J Biomech Eng 144(12):121010. https://doi.org/10.1115/1.4055835

    Article  Google Scholar 

  8. Liu M, Liang L, Sun W (2020) A generic physics-informed neural network-based constitutive model for soft biological tissues. Comput Methods Appl Mech Eng 372:5

    Article  MathSciNet  Google Scholar 

  9. Tac V, Sree VD, Rausch MK, Tepole AB (2022) Data-driven modeling of the mechanical behavior of anisotropic soft biological tissue. Eng Comput 38(5):4167–4182

    Article  Google Scholar 

  10. Leng Y, Tac V, Calve S, Tepole AB (2021) Predicting the mechanical properties of biopolymer gels using neural networks trained on discrete fiber network data. Comput Methods Appl Mech Eng 387:114160. https://doi.org/10.1016/j.cma.2021.114160

    Article  MathSciNet  Google Scholar 

  11. Kalina KA, Linden L, Brummund J, Metsch P, Kästner M (2022) Automated constitutive modeling of isotropic hyperelasticity based on artificial neural networks. Comput Mech 69(1):213–232

    Article  MathSciNet  Google Scholar 

  12. Fuhg JN, Bouklas N, Jones RE (2022) Learning hyperelastic anisotropy from data via a tensor basis neural network. J Mech Phys Solids 168:105022. https://doi.org/10.1016/j.jmps.2022.105022

    Article  MathSciNet  Google Scholar 

  13. Aggarwal A, Jensen BS, Pant S, Lee C-H (2023) Strain energy density as a Gaussian process and its utilization in stochastic finite element analysis: Application to planar soft tissues. Comput Methods Appl Mech Eng 404:115812. https://doi.org/10.1016/j.cma.2022.115812

    Article  MathSciNet  Google Scholar 

  14. Klein DK, Fernández M, Martin RJ, Neff P, Weeger O (2022) Polyconvex anisotropic hyperelasticity with neural networks. J Mech Phys Solids 159:104703

    Article  MathSciNet  Google Scholar 

  15. Linka K, Kuhl E (2023) A new family of constitutive artificial neural networks towards automated model discovery. Comput Methods Appl Mech Eng 403:115731

    Article  MathSciNet  Google Scholar 

  16. Tac V, Sahli Costabal F, Tepole AB (2022) Data-driven tissue mechanics with polyconvex neural ordinary differential equations. Comput Methods Appl Mech Eng 398:115248. https://doi.org/10.1016/j.cma.2022.115248

    Article  MathSciNet  Google Scholar 

  17. Taç V, Linka K, Sahli-Costabal F, Kuhl E, Tepole AB (2023) Benchmarking physics-informed frameworks for data-driven hyperelasticity. Comput Mech. https://doi.org/10.1007/s00466-023-02355-2

    Article  Google Scholar 

  18. Flaschel M, Kumar S, De Lorenzis L (2023) Automated discovery of generalized standard material models with euclid. Comput Methods Appl Mech Eng 405:115867

    Article  MathSciNet  Google Scholar 

  19. Thakolkaran P, Joshi A, Zheng Y, Flaschel M, De Lorenzis L, Kumar S (2022) Nn-euclid: Deep-learning hyperelasticity without stress data. J Mech Phys Solids 169:105076

    Article  MathSciNet  Google Scholar 

  20. Wang Z, Estrada JB, Arruda EM, Garikipati K (2021) Inference of deformation mechanisms and constitutive response of soft material surrogates of biological tissue by full-field characterization and data-driven variational system identification. J Mech Phys Solids 153:104474

    Article  MathSciNet  Google Scholar 

  21. St. Pierre SR, Rajasekharan D, Darwin EC, Linka K, Levenston ME, Kuhl E (2023) Discovering the mechanics of artificial and real meat (Jun. 2023). https://doi.org/10.1101/2023.06.04.543638

  22. Liang L, Liu M, Elefteriades J, Sun W (2023) Pytorch-fea: Autograd-enabled finite element analysis methods with applications for biomechanical analysis of human aorta. Computer Methods and Programs in Biomedicine 238:107616 https://doi.org/10.1016/j.cmpb.2023.107616. URL https://www.sciencedirect.com/science/article/pii/S016926072300281X

  23. Xue T, Liao S, Gan Z, Park C, Xie X, Liu WK, Cao J JAX-FEM: A differentiable GPU-accelerated 3D finite element solver for automatic inverse design and mechanistic data science

  24. Klein DK, Roth FJ, Valizadeh I, Weeger O (2023) Parametrised polyconvex hyperelasticity with physics-augmented neural networks (Jul. 2023). arXiv:2307.03463

  25. Matouš K, Geers MG, Kouznetsova VG, Gillman A (2017) A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials. J Comput Phys 330:192–220

    Article  MathSciNet  Google Scholar 

  26. Kouznetsova V, Brekelmans W, Baaijens F (2001) An approach to micro-macro modeling of heterogeneous materials. Comput Mech 27(1):37–48

    Article  Google Scholar 

  27. Li X, Liu Z, Cui S, Luo C, Li C, Zhuang Z (2019) Predicting the effective mechanical property of heterogeneous materials by image based modeling and deep learning. Comput Methods Appl Mech Eng 347:735–753

    Article  MathSciNet  Google Scholar 

  28. Lee T, Bilionis I, Tepole AB (2020) Propagation of uncertainty in the mechanical and biological response of growing tissues using multi-fidelity gaussian process regression. Comput Methods Appl Mech Eng 359:112724

    Article  MathSciNet  Google Scholar 

  29. Stowers C, Lee T, Bilionis I, Gosain AK, Tepole AB (2021) Improving reconstructive surgery design using gaussian process surrogates to capture material behavior uncertainty. J Mech Behav Biomed Mater 118:104340

    Article  Google Scholar 

  30. Jolicoeur-Martineau A, Piché-Taillefer R, des Combes RT, Mitliagkas I (Oct. 2020) Adversarial score matching and improved sampling for image generation. arXiv:2009.05475

  31. Chen N, Zhang Y, Zen H, Weiss RJ, Norouzi M, Chan W (2020) WaveGrad: Estimating Gradients for Waveform Generation (Oct. 2020). arXiv:2009.00713

  32. Lee JS, Kim J, Kim PM (2023) Proteinsgm: Score-based generative modeling for de novo protein design. https://doi.org/10.1101/2022.07.13.499967. URL https://www.biorxiv.org/content/early/2023/02/04/2022.07.13.499967

  33. Pidstrigach J (2022) Score-based generative models detect manifolds. arXiv:2206.01018

  34. Song Y, Sohl-Dickstein J, Kingma DP, Kumar A, Ermon S, Poole B (Feb. 2021) Score-Based Generative Modeling through Stochastic Differential Equations. arXiv:2011.13456

  35. Croitoru, F-A, Hondru V, Ionescu RT, Shah M (2023) Diffusion Models in Vision: A Survey, IEEE Transactions on Pattern Analysis and Machine Intelligence 1–20 arXiv:2209.04747, https://doi.org/10.1109/TPAMI.2023.3261988

  36. Taç V, Rausch MK, Costabal FS, Tepole B (2023) Data-driven anisotropic finite viscoelasticity using neural ordinary differential equations. Comput Methods Appl Mech Eng 411:98

    Article  MathSciNet  Google Scholar 

  37. Karras T, Aittala M, Aila T, Laine S (2022) Elucidating the design space of diffusion-based generative models. Adv Neural Inf Process Syst 35:26565–26577

    Google Scholar 

  38. Pidstrigach J (2022) Score-based generative models introduction. URL https://jakiw.com/sgm_intro

  39. Vincent P (2011) A connection between score matching and denoising autoencoders. Neural Comput 23(7):1661–1674

    Article  MathSciNet  Google Scholar 

  40. Chung H, Sim B, Ryu D, Ye JC (2022) Improving diffusion models for inverse problems using manifold constraints. Adv Neural Inf Process Syst 35:25683–25696

    Google Scholar 

  41. Chung H, Kim J, Mccann MT, Klasky ML, Ye JC (2022) Diffusion posterior sampling for general noisy inverse problems, arXiv preprint arXiv:2209.14687

  42. Du Y, Collins K, Tenenbaum J, Sitzmann V (2021) Learning signal-agnostic manifolds of neural fields. Adv Neural Inf Process Syst 34:8320–8331

    Google Scholar 

  43. Dupont E, Kim H, Eslami S, Rezende D, Rosenbaum D (2022) From data to functa: Your data point is a function and you can treat it like one, arXiv preprint arXiv:2201.12204

  44. Elhag AA, Susskind JM, Bautista MA (2023) Manifold diffusion fields, arXiv preprint arXiv:2305.15586

  45. Borovitskiy V, Terenin A, Mostowsky P et al (2020) Matérn gaussian processes on riemannian manifolds. Adv Neural Inf Process Syst 33:12426–12437

    Google Scholar 

  46. Gander L, Pezzuto S, Gharaviri A, Krause R, Perdikaris P, Sahli Costabal F (2022) Fast characterization of inducible regions of atrial fibrillation models with multi-fidelity gaussian process classification. Front Physiol 260:2

    Google Scholar 

  47. Hughes TJ (2012) The finite element method: linear static and dynamic finite element analysis. Courier Corporation

  48. May-Newman K, Yin F (1998) A constitutive law for mitral valve tissue

  49. Meador WD, Sugerman GP, Story HM, Steifert AW, Bersi MR, Tepole AB, Rausch MK (2020) The regional-dependent biaxial behavior of young and aged mouse skin: A detailed histomechanical characterization, residual strain analysis, and constitutive model. Acta Biomater 101:403–413

    Article  Google Scholar 

  50. Rizzo ML, Székely GJ (2016) Energy distance. Wiley Interdiscip Rev Comput Stat 8(1):27–38. https://doi.org/10.1002/wics.1375

    Article  MathSciNet  Google Scholar 

  51. Luebberding S, Krueger N, Kerscher M (2014) Mechanical properties of human skin in vivo: a comparative evaluation in 300 men and women. Skin Res Technol 20(2):127–135

    Article  Google Scholar 

  52. Lee T, Turin SY, Stowers C, Gosain AK, Tepole AB (2021) Personalized computational models of tissue-rearrangement in the scalp predict the mechanical stress signature of rotation flaps. Cleft Palate Craniofac J 58(4):438–445

    Article  Google Scholar 

  53. Krueger D, Huang C-W, Islam R, Turner R, Lacoste A, Courville A (2017) Bayesian hypernetworks, arXiv preprint arXiv:1710.04759

  54. Yang L, Zhang Z, Song Y, Hong S, Xu R, Zhao Y, Shao Y, Zhang W, Cui B, Yang M-H (2022) Diffusion models: A comprehensive survey of methods and applications, arXiv preprint arXiv:2209.00796

  55. Zhuang P, Abnar S, Gu J, Schwing A, Susskind JM, Bautista MÁ (2022) Diffusion probabilistic fields, in: The Eleventh International Conference on Learning Representations

  56. Dutordoir V, Saul A, Ghahramani Z, Simpson F (2023) Neural diffusion processes, in: International Conference on Machine Learning, PMLR, pp. 8990–9012

  57. Staber B, Guilleminot J (2018) A random field model for anisotropic strain energy functions and its application for uncertainty quantification in vascular mechanics. Comput Methods Appl Mech Eng 333:94–113

    Article  MathSciNet  Google Scholar 

  58. Hauseux P, Hale JS, Cotin S, Bordas SP (2018) Quantifying the uncertainty in a hyperelastic soft tissue model with stochastic parameters. Appl Math Model 62:86–102

    Article  MathSciNet  Google Scholar 

  59. Joodaki H, Panzer MB (2018) Skin mechanical properties and modeling: a review. J Eng Med 232:4

    Article  Google Scholar 

  60. Lee T, Turin SY, Gosain AK, Bilionis I, Tepole AB (2018) Propagation of material behavior uncertainty in a nonlinear finite element model of reconstructive surgery. Biomech Model Mechanobiol 17:1857–1873

    Article  Google Scholar 

  61. Mueller B, Elrod J, Distler O, Schiestl C, Mazza E (2021) On the reliability of suction measurements for skin characterization. J Biomech Eng 143(2):021002

    Article  Google Scholar 

  62. Laiacona D, Cohen J, Coulon K, Lipsky ZW, Maiorana C, Boltyanskiy R, Dufresne ER, German GK (2019) Non-invasive in vivo quantification of human skin tension lines. Acta Biomater 88:141–148

    Article  Google Scholar 

  63. Liang X, Boppart SA (2009) Biomechanical properties of in vivo human skin from dynamic optical coherence elastography. IEEE Trans Biomed Eng 57(4):953–959

    Article  Google Scholar 

  64. Song G, An J, Tepole AB, Lee T (2022) Bayesian inference with gaussian process surrogates to characterize anisotropic mechanical properties of skin from suction tests. J Biomech Eng 144(12):121003

    Article  Google Scholar 

  65. Kakaletsis S, Meador WD, Mathur M, Sugerman GP, Jazwiec T, Malinowski M, Lejeune E, Timek TA, Rausch MK (2021) Right ventricular myocardial mechanics: Multi-modal deformation, microstructure, modeling, and comparison to the left ventricle. Acta Biomater 123:154–166

    Article  Google Scholar 

  66. Meador WD, Mathur M, Sugerman GP, Jazwiec T, Malinowski M, Bersi MR, Timek TA, Rausch MK (2020) A detailed mechanical and microstructural analysis of ovine tricuspid valve leaflets. Acta Biomater 102:100–113

    Article  Google Scholar 

  67. Chen S, Ní Annaidh A, Roccabianca S (2020) A microstructurally inspired constitutive model for skin mechanics. Biomech Model Mechanobiol 19(1):275–289

    Article  Google Scholar 

  68. Erickson CB, Ankenman BE, Sanchez SM (2018) Comparison of gaussian process modeling software. Eur J Oper Res 266(1):179–192

    Article  MathSciNet  Google Scholar 

  69. Costabal FS, Pezzuto S, Perdikaris P (2022) Delta -pinns: physics-informed neural networks on complex geometries, arXiv preprint arXiv:2209.03984

  70. You H, Zhang Q, Ross CJ, Lee C-H, Hsu M-C, Yu Y (2022) A physics-guided neural operator learning approach to model biological tissues from digital image correlation measurements. J Biomech Eng 144(12):121012

    Article  Google Scholar 

  71. Estrada JB, Luetkemeyer CM, Scheven UM, Arruda EM (2020) Mr-u: material characterization using 3d displacement-encoded magnetic resonance and the virtual fields method. Exp Mech 60:907–924

    Article  Google Scholar 

  72. Zhang W, Sommer G, Niestrawska JA, Holzapfel GA, Nordsletten D (2022) The effects of viscoelasticity on residual strain in aortic soft tissues. Acta Biomater 140:398–411

    Article  Google Scholar 

  73. Holzapfel GA, Fereidoonnezhad B (2017) Modeling of damage in soft biological tissues. Biomechanics of living organs. Elsevier, Amsterdam, pp 101–123

    Chapter  Google Scholar 

  74. Vlassis NN, Ma R, Sun W (2020) Geometric deep learning for computational mechanics part i: Anisotropic hyperelasticity. Comput Methods Appl Mech Eng 371:113299

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

VT and IB acknowledge the support of AFOSR under the grant number FA09950-22-1-0061. FSC and MR acknowledge the support of the Open Seed Fund of the School of Engineering at Pontificia Universidad Católica de Chile. ABT acknowledges support from National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Health, United States under award R01AR074525.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Francisco Sahli Costabal or Adrian Buganza Tepole.

Ethics declarations

Conflict of interest

The authors have no Conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 542 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taç, V., Rausch, M.K., Bilionis, I. et al. Generative hyperelasticity with physics-informed probabilistic diffusion fields. Engineering with Computers (2024). https://doi.org/10.1007/s00366-024-01984-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00366-024-01984-2

Keywords

Navigation