Skip to main content
Log in

An improved plane strain/plane stress peridynamic formulation of the elastic–plastic constitutive law for von Mises materials

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

A two-dimensional ordinary state-based peridynamic formulation is proposed for the analysis of elastic–plastic plane structures. Selecting appropriate relation for isotropic extension state, the deviatoric strain energy formulation is derived for plane strain/plane stress cases. Simple formulas to calculate peridynamic equivalent von Mises stress and its equivalent plastic strain are proposed. New yield function and flow rule are introduced. Implicit backward Euler time integration is used to obtain the increment of deviatoric plastic extension. Two example problems of grooved plate specimen and perforated plate under uniform tensile loading are considered to verify the accuracy of the present model in plane strain and plane stress situations respectively. The obtained results had a good agreement with those obtained by finite-element method. Results of displacements, von Mises stress, equivalent plastic strain, and plastic zone area are demonstrated. The effect of influence function on the results is also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Amelirad O, Assempour A (2022) Coupled continuum damage mechanics and crystal plasticity model and its application in damage evolution in polycrystalline aggregates. Eng Comput 38(3):2121–2135

    Article  Google Scholar 

  2. Barros PD, Baptista AJ, Alves JL, Oliveira MC, Rodrigues DM, Menezes LF (2015) Trimming of 3D solid finite element meshes: sheet metal forming tests and applications. Eng Comput 31(2):237–257

    Article  Google Scholar 

  3. Schiavone A, Abeygunawardana-Arachchige G, Silberschmidt VV (2016) Crack initiation and propagation in ductile specimens with notches: experimental and numerical study. Acta Mech 227(1):203–215

    Article  Google Scholar 

  4. Lorenzana A, Garrido JA (1999) Analysis of the elastic–plastic problem involving finite plastic strain using the boundary element method. Comput Struct 73(1):147–159

    Article  MATH  Google Scholar 

  5. Aminzadeh M, Tavakkoli SM (2021) Maximum energy dissipation for elasto-plastic plates via isogeometric shape optimization. Eng Comput 37(1):355–367

    Article  Google Scholar 

  6. Ullah Z, Augarde CE (2013) Finite deformation elasto-plastic modelling using an adaptive meshless method. Comput Struct 118:39–52

    Article  Google Scholar 

  7. Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1):175–209

    Article  MathSciNet  MATH  Google Scholar 

  8. Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J Elast 88(2):151–184

    Article  MathSciNet  MATH  Google Scholar 

  9. Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83(17–18):1526–1535

    Article  Google Scholar 

  10. Silling SA, Bobaru F (2005) Peridynamic modeling of membranes and fibers. Int J Non-Linear Mech 40(2–3):395–409

    Article  MATH  Google Scholar 

  11. Ha Y, Bobaru F (2010) Studies of dynamic crack propagation and crack branching with peridynamics. Int J Fract 162(1–2):229–244

    Article  MATH  Google Scholar 

  12. Le QV, Chan WK, Schwartz J (2014) A two-dimensional ordinary, state-based peridynamic model for linearly elastic solids. Int J Numer Meth Eng 98(8):547–561

    Article  MathSciNet  MATH  Google Scholar 

  13. Madenci E, Oterkus E (2013) Peridynamic theory and its applications. Springer, New York

    MATH  Google Scholar 

  14. Van Le Q, Bobaru F (2017) Objectivity of state-based peridynamic models for elasticity. J Elast 131(1):1–17

    MathSciNet  MATH  Google Scholar 

  15. Zhang Y, Qiao P (2018) An axisymmetric ordinary state-based peridynamic model for linear elastic solids. Comput Methods Appl Mech Eng 341:517–550

    Article  MathSciNet  MATH  Google Scholar 

  16. Taylor M, Steigmann DJ (2013) A two-dimensional peridynamic model for thin plates. Math Mech Solids 20(8):998–1010

    Article  MathSciNet  MATH  Google Scholar 

  17. O’Grady J, Foster J (2014) Peridynamic beams: a non-ordinary, state-based model. Int J Solids Struct 51(18):3177–3183

    Article  Google Scholar 

  18. O’Grady, J. and J.T. Foster. Peridynamic Beams and Plates: A Non-Ordinary State-Based Model. in ASME 2014 International Mechanical Engineering Congress and Exposition. 2014. American Society of Mechanical Engineers.

  19. Diyaroglu C, Oterkus E, Oterkus S, Madenci E (2015) Peridynamics for bending of beams and plates with transverse shear deformation. Int J Solids Struct 69–70:152–168

    Article  Google Scholar 

  20. Chowdhury SR, Roy P, Roy D, Reddy JN (2016) A peridynamic theory for linear elastic shells. Int J Solids Struct 84:110–132

    Article  Google Scholar 

  21. Diyaroglu C, Oterkus E, Oterkus S (2017) An Euler-Bernoulli beam formulation in an ordinary state-based peridynamic framework. Math Mech Solids. https://doi.org/10.1177/1081286517728424

    Article  MATH  Google Scholar 

  22. Yolum U, Taştan A, Güler MA (2016) A peridynamic model for ductile fracture of moderately thick plates. Procedia Struct Integr 2:3713–3720

    Article  Google Scholar 

  23. Macek RW, Silling SA (2007) Peridynamics via finite element analysis. Finite Elem Anal Des 43(15):1169–1178

    Article  MathSciNet  Google Scholar 

  24. Sun S, Sundararaghavana V (2014) A peridynamic implementation of crystal plasticity. Int J Solids Struct 51:3350–3360

    Article  Google Scholar 

  25. Luo J, Ramazani A, Sundararaghavan V (2018) Simulation of micro-scale shear bands using peridynamics with an adaptive dynamic relaxation method. Int J Solids Struct 130–131:36–48

    Article  Google Scholar 

  26. Lai X, Liu L, Li S, Zeleke M, Liu Q, Wang Z (2018) A non-ordinary state-based peridynamics modeling of fractures in quasi-brittle materials. Int J Impact Eng 111:130–146

    Article  Google Scholar 

  27. Foster JT, Silling SA, Chen WW (2010) Viscoplasticity using peridynamics. Int J Numer Meth Eng 81(10):1242–1258

    Article  MATH  Google Scholar 

  28. Liu S, Fang G, Liang J, Fu M, Wang B (2020) A new type of peridynamics: element-based peridynamics. Comput Methods Appl Mech Eng 366:113098

    Article  MathSciNet  MATH  Google Scholar 

  29. Mitchell, J.A., A nonlocal, ordinary, state-based plasticity model for peridynamics. Sandia Report SAND2011–3166, Sandia National Laboratories, Albuquerque, NM, 2011.

  30. Lammi, C.J. and T.J. Vogler, A Nonlocal Peridynamic Plasticity Model for the Dynamic Flow and Fracture of Concrete. Sandia Report SAND2014–18257, Sandia National Laboratories, Albuquerque, NM, 2014.

  31. Ren H, Zhuang X, Rabczuk T (2016) A new peridynamic formulation with shear deformation for elastic solid. J Micromech Mol Phys 01(02):1650009

    Article  Google Scholar 

  32. Zhang, T., X.-P. Zhou, and Q.-H. Qian, Drucker-Prager plasticity model in the framework of OSB-PD theory with shear deformation. Engineering with Computers, 2021.

  33. Madenci E, Oterkus S (2016) Ordinary state-based peridynamics for plastic deformation according to von Mises yield criteria with isotropic hardening. J Mech Phys Solids 86:192–219

    Article  MathSciNet  Google Scholar 

  34. Ahmadi M, Hosseini-Toudeshky H, Sadighi M (2020) Peridynamic micromechanical modeling of plastic deformation and progressive damage prediction in dual-phase materials. Eng Fract Mech 235:107179

    Article  Google Scholar 

  35. Nowak M, Mulewska K, Azarov A, Kurpaska Ł, Ustrzycka A (2022) A peridynamic elasto-plastic damage model for ion-irradiated materials. Int J Mech Sci 237:107806

    Article  Google Scholar 

  36. Kazemi SR (2020) Plastic deformation due to high-velocity impact using ordinary state-based peridynamic theory. Int J Impact Eng 137:103470

    Article  Google Scholar 

  37. Chen W, Zhu F, Zhao J, Li S, Wang G (2018) Peridynamics-based fracture animation for elastoplastic solids. Comput Gr Forum 37(1):112–124

    Article  Google Scholar 

  38. Zhou XP, Shou YD, Berto F (2018) Analysis of the plastic zone near the crack tips under the uniaxial tension using ordinary state-based peridynamics. Fatigue Fract Eng Mater Struct 41(5):1159–1170

    Article  Google Scholar 

  39. Zhou X-P, Zhang T, Qian Q-H (2021) A two-dimensional ordinary state-based peridynamic model for plastic deformation based on Drucker-Prager criteria with non-associated flow rule. Int J Rock Mech Min Sci 146:104857

    Article  Google Scholar 

  40. Mousavi F, Jafarzadeh S, Bobaru F (2021) An ordinary state-based peridynamic elastoplastic 2D model consistent with J2 plasticity. Int J Solids Struct 229:111146

    Article  Google Scholar 

  41. Silling SA, Lehoucq RB (2008) Convergence of peridynamics to classical elasticity theory. J Elast 93(1):13–37

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhou XP, Shou YD, Berto F (2018) Analysis of the plastic zone near the crack tips under the uniaxial tension using ordinary state-based peridynamics. Fatigue Fract Eng Mater Struct 41:1159–1170

    Article  Google Scholar 

  43. Asgari M, Kouchakzadeh MA (2019) An equivalent von Mises stress and corresponding equivalent plastic strain for elastic–plastic ordinary peridynamics. Meccanica 54:1001–1014

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the Sharif University of Technology [Grant No. QA961027].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Kouchakzadeh.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to any part for publishing this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

In Eq. (C2) of Mousavi et al. [40], it is claimed that since \(\underline{t}^{d}\) ignores the out of plane component in deviatoric stress tensor; thus, one can write (without any justification)

$$\frac{{3\pi l_{z} \delta^{4} }}{8}\frac{{\left\| {\underline{t}^{d} } \right\|^{2} }}{2} = \frac{3}{2}\left( {\left( {\sigma_{11}^{d} } \right)^{2} + \left( {\sigma_{22}^{d} } \right)^{2} + 2\left( {\sigma_{12}^{d} } \right)^{2} } \right).$$
(43)

On the other hand, the square of von Mises stress is given by

$$\sigma_{VM}^{2} = \frac{3}{2}\left( {\left( {\sigma_{11}^{d} } \right)^{2} + \left( {\sigma_{22}^{d} } \right)^{2} + \left( {\sigma_{33}^{d} } \right)^{2} 2\left( {\sigma_{12}^{d} } \right)^{2} } \right).$$
(44)

Comparing these two equations, they concluded that by adding missing out of plane component \(\frac{3}{2}\left( {\sigma_{33}^{d} } \right)^{2}\) to the both sides of Eq. (43), the von Mises stress can be obtained as

$$\sigma_{VM}^{2} = \frac{{3\pi l_{z} \delta^{4} }}{8}\frac{{\left\| {\underline{t}^{d} } \right\|^{2} }}{2} + \frac{3}{2}\left( {\sigma_{33}^{d} } \right)^{2} .$$
(45)

They proved that \(\sigma_{33}^{d} = - \left( {\underline{t}^{d} \bullet \underline{x} } \right)\) and the final form of von Mises stress is given as

$$\sigma_{VM}^{2} = \frac{{3\pi l_{z} \delta^{4} }}{8}\frac{{\left\| {\underline{t}^{d} } \right\|^{2} }}{2} + \frac{3}{2}\left( {\underline{t}^{d} \bullet \underline{x} } \right)^{2} .$$
(46)

For \(\omega = 1\), the weighted volume in PD can be written as \(m = {{\pi l_{z} \delta^{4} } \mathord{\left/ {\vphantom {{\pi l_{z} \delta^{4} } 2}} \right. \kern-0pt} 2}\). Thus, Eq. (46), can be written in general form as

$$\sigma_{VM}^{2} = \frac{3m}{8}\left\| {\underline{t}^{d} } \right\|^{2} + \frac{3}{2}\left( {\underline{t}^{d} \bullet \underline{x} } \right)^{2} .$$
(47)

According to the above explanations, they considered that the term \({{\left\| {\underline{t}^{d} } \right\|^{2} } \mathord{\left/ {\vphantom {{\left\| {\underline{t}^{d} } \right\|^{2} } 2}} \right. \kern-0pt} 2}\) does not have any contribution from \(\sigma_{33}^{d}\). However, we will show that \(\frac{{3\pi l_{z} \delta^{4} }}{8}\frac{{\left\| {\underline{t}^{d} } \right\|^{2} }}{2}\) does not equal to \(\frac{3}{2}\left( {\left( {\sigma_{11}^{d} } \right)^{2} + \left( {\sigma_{22}^{d} } \right)^{2} + 2\left( {\sigma_{12}^{d} } \right)^{2} } \right)\) and it has a contribution from \(\sigma_{33}^{d}\) as

$$\frac{3m}{8}\left\| {\underline{t}^{d} } \right\|^{2} = \frac{{3\pi l_{z} \delta^{4} }}{8}\frac{{\left\| {\underline{t}^{d} } \right\|^{2} }}{2} = \frac{3}{2}\left( {\left( {\sigma_{11}^{d} } \right)^{2} + \left( {\sigma_{22}^{d} } \right)^{2} + 2\left( {\sigma_{12}^{d} } \right)^{2} } \right) + \eta \left( {\sigma_{33}^{d} } \right)^{2} .$$
(48)

To show this, from Eq. (29), we have

$$W_{PD}^{d} = \frac{5}{4}\mu \left( {\varepsilon_{33}^{d} \,} \right)^{2} + \frac{\alpha }{2}\left( {\underline{\omega } \underline {e}^{d} \bullet \underline {e}^{d} } \right).$$
(49)

Considering \(\underline{t}^{d} = \alpha \omega \underline{e}^{d}\) and \(\sigma_{ij}^{d} = 2\mu \,\varepsilon_{ij}^{d}\) and substituting for \(\varepsilon_{33}^{d}\) and \(\underline {e}^{d}\) in terms of \(\sigma_{33}^{d}\), \(\underline{t}^{d}\), one can write

$$W_{PD}^{d} = \frac{5}{\mu }\left( {\sigma_{33}^{d} \,} \right)^{2} + \frac{1}{2\alpha }\omega^{ - 1} \underline{t}^{d} \bullet \underline{t}^{d} .$$
(50)

Using Eq. (50) in Eq. (26), we have

$$\overline{\sigma }_{PD} = \sqrt {30\left( {\sigma_{33}^{d} \,} \right)^{2} + \frac{3m}{8}\omega^{ - 1} \underline{t}^{d} \bullet \underline{t}^{d} } .$$
(51)

The von Mises stress in continuum mechanics is defined as

$$\sigma_{VM}^{CM} = \sqrt {\frac{3}{2}\left( {\left( {\sigma_{11}^{d} } \right)^{2} + \left( {\sigma_{22}^{d} } \right)^{2} + \left( {\sigma_{33}^{d} } \right)^{2} + 2\left( {\sigma_{12}^{d} } \right)^{2} } \right)} .$$
(52)

Equating Eqs. (51) and (52), we have

$$\begin{gathered} 30\left( {\sigma_{33}^{d} \,} \right)^{2} + \frac{3m}{8}\omega^{ - 1} \underline{t}^{d} \bullet \underline{t}^{d} = \frac{3}{2}\left( {\left( {\sigma_{11}^{d} } \right)^{2} + \left( {\sigma_{22}^{d} } \right)^{2} + \left( {\sigma_{33}^{d} } \right)^{2} + 2\left( {\sigma_{12}^{d} } \right)^{2} } \right) \hfill \\ \omega^{ - 1} \underline{t}^{d} \bullet \underline{t}^{d} = \frac{4}{m}\left( {\left( {\sigma_{11}^{d} } \right)^{2} + \left( {\sigma_{22}^{d} } \right)^{2} + 2\left( {\sigma_{12}^{d} } \right)^{2} } \right) - \frac{76}{m}\left( {\sigma_{33}^{d} } \right)^{2} . \hfill \\ \end{gathered}$$
(53)

Considering \(\underline{\omega } = 1\), substituting from Table 1 for \(m = {{\pi h\delta^{4} } \mathord{\left/ {\vphantom {{\pi h\delta^{4} } 2}} \right. \kern-0pt} 2}\) in Eq. (53), we have

$$\frac{3m}{8}\left\| {\underline{t}^{d} } \right\|^{2} = \frac{{3\pi l_{z} \delta^{4} }}{8}\frac{{\left\| {\underline{t}^{d} } \right\|^{2} }}{2} = \frac{3}{2}\left( {\left( {\sigma_{11}^{d} } \right)^{2} + \left( {\sigma_{22}^{d} } \right)^{2} + 2\left( {\sigma_{12}^{d} } \right)^{2} } \right) - \frac{57}{2}\left( {\sigma_{33}^{d} } \right)^{2} \frac{1}{2}\left\| {\underline{t}^{d} } \right\|^{2} .$$
(54)

From Eq. (54), \(\eta\) can be obtained as \(- \frac{57}{2}\). Thus, the relationship claimed in Eq. (43) is not correct.

Figure 

Fig. 13
figure 13

Comparison of two formulations for vertical central axis displacement (left) and horizontal central axis von Mises stress (right) distribution in perforated plate

13 shows the comparison of the results with Mousavi et al.’s [40] formulation and present study for von Mises stress distribution and vertical displacement in plane stress case. As it can be seen, the Mousavi et al.’s [40] formulation cannot predict the von Mises stress and vertical displacement accurately.

Appendix B

In 3D PD, yield function is given by \(F\left( {\underline{t}^{d} } \right) = \frac{1}{2}\underline{\omega }^{ - 1} \underline{t}^{d} \bullet \underline{t}^{d} - t_{0}\). Taking Freshet derivative with respect to \(\underline{t}^{d}\), one can get

$${{\partial F} \mathord{\left/ {\vphantom {{\partial F} {\partial \underline{t}^{d} = }}} \right. \kern-0pt} {\partial \underline{t}^{d} = }}\underline{\omega }^{ - 1} \underline{t}^{d} .$$
(55)

Knowing that \(\underline{t}^{d} = \underline{t} - \frac{{\underline{t} \bullet \underline{x} }}{m}\underline{\omega x}\) and replacing in yield function, one can write the \(F\left( {\underline{t} } \right)\) as

$$F\left( {\underline{t} } \right) = \frac{1}{2}\underline{\omega }^{ - 1} \left( {\underline{t} - \frac{{\underline{t} \bullet \underline{x} }}{m}\underline{\omega x} } \right) \bullet \left( {\underline{t} - \frac{{\underline{t} \bullet \underline{x} }}{m}\underline{\omega x} } \right) = \frac{1}{2}\left( {\underline{\omega }^{ - 1} \underline{t} \bullet \underline{t} - 2\frac{{\left( {\underline{t} \bullet \underline{x} } \right)^{2} }}{m} + \frac{{\left( {\underline{t} \bullet \underline{x} } \right)^{2} }}{m}} \right) - t_{0} .$$
(56)

\({{\partial F} \mathord{\left/ {\vphantom {{\partial F} {\partial \underline{t} }}} \right. \kern-0pt} {\partial \underline{t} }}\) can be written as

$${{\partial F} \mathord{\left/ {\vphantom {{\partial F} {\partial \underline{t} = }}} \right. \kern-0pt} {\partial \underline{t} = }}\underline{\omega }^{ - 1} \underline{t} - \frac{{\left( {\underline{t} \bullet \underline{x} } \right)}}{m}\underline{x} = \underline{\omega }^{ - 1} \underline{t}^{d} .$$
(57)

Comparing Eqs. (55) and (57), it can be concluded that \({{\partial F} \mathord{\left/ {\vphantom {{\partial F} {\partial \underline{t}^{d} = }}} \right. \kern-0pt} {\partial \underline{t}^{d} = }}{{\partial F} \mathord{\left/ {\vphantom {{\partial F} {\partial \underline{t} }}} \right. \kern-0pt} {\partial \underline{t} }}\).

Appendix C

Considering the yield function in Eqs. (16) and (17), taking \({{\partial F} \mathord{\left/ {\vphantom {{\partial F} {\partial \underline{t}^{d} }}} \right. \kern-0pt} {\partial \underline{t}^{d} }}\), one can get

$$\begin{gathered} F\left( {\underline{t}_{d} ,{t}_{0} } \right) = {{\left( {\underline{\omega }^{ - 1} \underline{t}^{d} } \right) \bullet \underline{t}^{d} } \mathord{\left/ {\vphantom {{\left( {\omega^{ - 1} \underline{t}^{d} } \right) \bullet \underline{t}^{d} } 2}} \right. \kern-0pt} 2} + E\left( {\underline{t}^{d} \bullet \underline{x} } \right)^{2} - {t}_{0}, \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,E = {5 \mathord{\left/ {\vphantom {5 {2m}}} \right. \kern-0pt} {2m}} \hfill \\ \hfill \\ {{\partial F} \mathord{\left/ {\vphantom {{\partial F} {\partial \underline{t}^{d} }}} \right. \kern-0pt} {\partial \underline{t}^{d} }} = \underline{\omega }^{ - 1} \underline{t}^{d} + 2E\left( {\underline{t}^{d} \bullet \underline{x} } \right)\underline{x} = \underline{\omega }^{ - 1} \underline{t}^{d} + 5\left( {\underline{t}^{d} \bullet \underline{x} } \right){{\underline{x} } \mathord{\left/ {\vphantom {{\underline{x} } m}} \right. \kern-0pt} m}. \hfill \\ \end{gathered}$$
(58)

Substituting for \(\underline{t}^{d}\) and \(\underline{t}^{d} \bullet \underline{x}\) in terms of \(\underline{t}\) and \(\underline{t} \bullet \underline{x}\) from Eqs. (10) and (13), one can get the yield function in terms of \(\underline{t}\) as

$$F\left( {\underline{t} ,\underline{t}_{0} } \right) = \left\{ {\begin{array}{*{20}c} {\frac{1}{2}\underline{\omega }^{ - 1} \underline{t} \bullet \underline{t} - \frac{E}{15}\,\left( {\underline{t} \bullet \underline{x}} \right)^{2} - {t}_{0} } {\left( {{\text{2D}}\,{\text{plane}}\,{\text{stress}}} \right)} \\ {\frac{1}{2}\underline{\omega }^{ - 1} \underline{t} \bullet \underline{t} - \frac{E}{5}\frac{{\left( {9\kappa^{2} + 6\mu \kappa - 5\mu^{2} } \right)}}{{\left( {\kappa + {\mu \mathord{\left/ {\vphantom {\mu 3}} \right. \kern-0pt} 3}} \right)^{2} }}\left( {\underline{t} \bullet \underline{x} } \right)^{2} - {t}_{0} } {\left( {{\text{2D}}\,{\text{plane}}\,{\text{strain}}} \right)} \\ \end{array} } \right.,$$
(59)

Taking \({{\partial F} \mathord{\left/ {\vphantom {{\partial F} {\partial \underline{t} }}} \right. \kern-0pt} {\partial \underline{t} }}\), one can get

$$\begin{gathered} {{\partial F} \mathord{\left/ {\vphantom {{\partial F} {\partial \underline{t} }}} \right. \kern-0pt} {\partial \underline{t} }} = \left\{ \begin{gathered} \underline{\omega }^{ - 1} \underline{t} - \frac{1}{3}\,\left( {\underline{t} \bullet \underline{x} } \right)\frac{{\underline{x} }}{m}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{\text{2D}}\,{\text{plane}}\,{\text{stress}}} \right) \hfill \\ \underline{\omega }^{ - 1} \underline{t} - \frac{{\left( {9\kappa^{2} + 6\mu \kappa - 5\mu^{2} } \right)}}{{9\left( {\kappa + {\mu \mathord{\left/ {\vphantom {\mu 3}} \right. \kern-0pt} 3}} \right)^{2} }}\left( {\underline{t} \bullet \underline{x} } \right)\,\frac{{\underline{x} }}{m}\,\,\,\,\,\,\,\,\,\,\,\left( {{\text{2D}}\,{\text{plane}}\,{\text{strain}}} \right) \hfill \\ \end{gathered} \right.. \hfill \\ \hfill \\ \end{gathered}$$
(60)

Substituting for \(\underline{t}\) and \(\underline{t} \bullet \underline{x}\) in terms of \(\underline{t}^{d}\) and \(\underline{t}^{d} \bullet \underline{x}\) from Eqs. (10) and (13), the following relations can be obtained:

$${{\partial F} \mathord{\left/ {\vphantom {{\partial F} {\partial \underline{t} }}} \right. \kern-0pt} {\partial \underline{t} }} = \left\{ {\begin{array}{*{20}c} {\underline{\omega }^{ - 1} \underline{t}^{d} + \left( {\underline{t}^{d} \bullet \underline{x} } \right)\frac{{\underline{x} }}{m}\,} {\left( {{\text{2D}}\,{\text{plane}}\,{\text{stress}}} \right)} \\ {\underline{\omega }^{ - 1} \underline{t}^{d} + \frac{{ - \kappa + {{5\mu } \mathord{\left/ {\vphantom {{5\mu } 3}} \right. \kern-0pt} 3}}}{{\kappa + {\mu \mathord{\left/ {\vphantom {\mu 3}} \right. \kern-0pt} 3}}}\left( {\underline{t}^{d} \bullet \underline{x} } \right)\frac{{\underline{x} }}{m}} {\left( {{\text{2D}}\,{\text{plane}}\,{\text{strain}}} \right)} \\ \end{array} } \right..$$
(61)

Comparing Eqs. (61) and (58), it is found that \({{\partial F} \mathord{\left/ {\vphantom {{\partial F} {\partial \underline{t}^{d} \ne }}} \right. \kern-0pt} {\partial \underline{t}^{d} \ne }}{{\partial F} \mathord{\left/ {\vphantom {{\partial F} {\partial \underline{t} }}} \right. \kern-0pt} {\partial \underline{t} }}\) for both of plane strain and plane stress cases.

Appendix D

Consider the following uniaxial tension loading condition (which satisfy dilatation zero behavior of von Mises plasticity) for plan strain problem:

$${{\varvec{\upvarepsilon}}}^{dp} = \left[ {\begin{array}{*{20}c} \varepsilon & 0 & 0 \\ 0 & { - \varepsilon } & 0 \\ 0 & 0 & 0 \\ \end{array} } \right].$$
(62)

Using the above strain field, plastic extension state \(\underline {e}^{dp}\) can be represented as

$$\underline {e}^{dp} = \left| {\underline{Y} } \right| - \left| {\underline{x} } \right| = \frac{{\left( {x_{1}^{2} - x_{2}^{2} } \right)}}{{\sqrt {x_{1}^{2} + x_{2}^{2} } }}\varepsilon .$$
(63)

Using Eq. (63), the \(\underline{\omega } \underline {e}^{dp} \bullet \underline {e}^{dp}\) term can be calculated as

$$\underline{\omega } \underline {e}^{dp} \bullet \underline {e}^{dp} = \frac{m}{2}\varepsilon^{2} .$$
(64)

Knowing that \(\theta_{Plastic} = 0\) for plan strain case \(\overline{\varepsilon }_{PD}\) is calculated as

$$\overline{\varepsilon }_{PD} = \sqrt {\chi \frac{m}{2}\varepsilon^{2} } \,.$$
(65)

The equivalent plastic strain should recover the axial plastic strain in uniaxial tension loading. Thus, the parameter \(\chi\) can be calculated as

$$\chi = \frac{2}{m}.$$
(66)

For plane stress case, the following strain field is considered:

$${{\varvec{\upvarepsilon}}}^{dp} = \varepsilon \left[ {\begin{array}{*{20}c} 1 & 0 & 0 \\ 0 & { - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2}} & 0 \\ 0 & 0 & { - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2}} \\ \end{array} } \right].$$
(67)

Similar to the procedure for plane strain loading, one can obtain the \(\underline{\omega } \underline {e}^{dp} \bullet \underline {e}^{dp}\), \(\theta_{Plastic}\) as

$$\underline{\omega } \underline {e}^{dp} \bullet \underline {e}^{dp} = m\varepsilon^{2} ,\,\,\,\,\,\,\theta_{Plastic} = 2\varepsilon .$$
(68)

Considering \(\chi = {2 \mathord{\left/ {\vphantom {2 m}} \right. \kern-0pt} m}\) from previous case, \(\gamma\) can be obtained as

$$\gamma = \frac{5}{4}.$$
(69)

Thus, unified formulation for \(\overline{\varepsilon }_{PD}\) in both cases can be shown as

$$\overline{\varepsilon }_{PD} = \sqrt {\gamma \left( {\theta_{Plastic} \,} \right)^{2} + \frac{2}{m}\left( {\underline{\omega } \underline {e}^{dp} \bullet \underline {e}^{dp} } \right)} \,\,\,\,\,\gamma = \left\{ {\begin{array}{*{20}c} {5/4} & {\left( {{\text{2D}}\,{\text{plane}}\,{\text{stress}}} \right)} \\ 0 & {\left( {{\text{2D}}\,{\text{plane}}\,{\text{strain}}} \right)} \\ \end{array} } \right..$$
(70)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asgari, M., Kouchakzadeh, M.A. An improved plane strain/plane stress peridynamic formulation of the elastic–plastic constitutive law for von Mises materials. Engineering with Computers (2023). https://doi.org/10.1007/s00366-023-01898-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00366-023-01898-5

Keywords

Navigation