Skip to main content
Log in

Morphodynamic shallow layer equations featuring bed load and suspended sediment with lattice Boltzmann method

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

Different coupled systems for the shallow water equation, bed elevation, and suspended load equation are proposed until this day. The main differences come from the physical viewpoints, which caused some distinctions in the models. Recently, a coupled shallow water system of equations over an erodible bed has been proposed, in which the water layer, bed morphodynamics, and suspended sediments are interacting with each other. This system possesses a term in the mass conservation equation that couples the water depth and the bed level in the equilibrium distribution function required by lattice Boltzmann method (LBM). In this paper, the main goal is to utilize an advanced LBM to solve this system of equations. Besides solving the bed morphological equation by LBM, another simple and explicit scheme (like LBM) is proposed to investigate the ability of LBM. As the second goal, a practical approach is developed for applying so-called open boundary condition that relaxes the solution onto a prescribed equilibrium flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. Armanini A, Fraccarollo L, Rosatti G (2009) Two-dimensional simulation of debris flows in erodible channels. Comput Geosci 35(5):993–1006

    Article  Google Scholar 

  2. Atkinson K, Han W, Stewart ED (2011) Numerical solution of ordinary differential equations, vol 108. Wiley, New York

    Google Scholar 

  3. Bohorquez P, Ancey C (2016) Particle diffusion in non-equilibrium bedload transport simulations. Appl Math Model 40:7474–7492

    Article  MathSciNet  Google Scholar 

  4. Cai L, Xu W, Luo X (2017) A double-distribution-function lattice Boltzmann method for bed-load sediment transport. Int J Appl Mech 9(01):1750013

    Article  Google Scholar 

  5. Cao Z, Pender G, Wallis S, Carling P (2004) Computational dam-break hydraulics over erodible sediment bed. J Hydraul Eng 130(7):689–703

    Article  Google Scholar 

  6. Davis PJ (1975) Interpolation and approximation. Courier Corporation, Delhi

    Google Scholar 

  7. Dong Y, Zhang J, Yan G (2010) A higher-order moment method of the lattice Boltzmann model for the conservation law equation. Appl Math Model 34(2):481–494

    Article  MathSciNet  Google Scholar 

  8. Hielscher AH, Jacques SL, Wang L, Tittel FK (1957) The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues. Phys Med Biol 40(11):1957

    Article  Google Scholar 

  9. Hu P, Cao Z, Pender G, Tan G (2012) Numerical modelling of turbidity currents in the Xiaolangdi reservoir, Yellow River, China. J Hydrol 464:41–53

    Article  Google Scholar 

  10. Iverson RM, Ouyang C (2015) Entrainment of bed material by Earth-surface mass flows: review and reformulation of depth-integrated theory. Rev Geophys 53(1):27–58

    Article  Google Scholar 

  11. Juez C, Murillo J, García-Navarro P (2014) A 2D weakly-coupled and efficient numerical model for transient shallow flow and movable bed. Adv Water Resour 71:93–109

    Article  Google Scholar 

  12. Krüger T, Kusumaatmaja H, Kuzmin A, Shardt O, Silva G, Viggen EM (2017) The lattice Boltzmann method. Springer International Publishing, Cham

    Book  Google Scholar 

  13. Li J, Cao Z, Cui Y, Borthwick AG (2020) Barrier lake formation due to landslide impacting a river: a numerical study using a double layer-averaged two-phase flow model. Appl Math Model 80:574–601

    Article  MathSciNet  Google Scholar 

  14. Li S, Duffy CJ (2011) Fully coupled approach to modeling shallow water flow, sediment transport, and bed evolution in rivers. Water Resour Res 47(3):w03508

  15. Li Y, Huang P (2009) A coupled lattice Boltzmann model for the shallow water-contamination system. Int J Numer Methods Fluids 59(2):195–213

    Article  Google Scholar 

  16. Liu X, Beljadid A (2017) A coupled numerical model for water flow, sediment transport and bed erosion. Comput Fluids 154:273–284

    Article  MathSciNet  Google Scholar 

  17. Liu X, Mohammadian A, Kurganov A, Sedano JAI (2015) Well-balanced central-upwind scheme for a fully coupled shallow water system modeling flows over erodible bed. J Comput Phys 300:202–218

    Article  MathSciNet  Google Scholar 

  18. Martínez-Aranda S, Fernández-Pato J, Echeverribar I, Navas-Montilla A, Morales-Hernández M, Brufau P, Murillo J, García-Navarro P (2022) Finite volume models and efficient simulation tools (EST) for shallow flows. In: Advances in fluid mechanics: modelling and simulations, pp. 67–137. Springer Nature Singapore. https://doi.org/10.1007/978-981-19-1438-6_3

  19. Martinez-Aranda S, Meurice R, Soares-Frazão S, García-Navarro P (2021) Comparative analysis of HLLC- and Roe-based models for the simulation of a dambreak flow in an erodible channel with a 90\(^\circ\) bend. Water 13:1840

    Article  Google Scholar 

  20. Martinez-Aranda S, Murillo J, García-Navarro P (2021) A GPU-accelerated Efficient Simulation Tool (EST) for 2D variable-density mud/debris flows over non-uniform erodible beds. Eng Geol 296:106462

    Article  Google Scholar 

  21. Martínez-Aranda S, Murillo J, García-Navarro P (2020) A robust two-dimensional model for highly sediment-laden unsteady flows of variable density over movable beds. J Hydroinf 22:1138–1160

    Article  Google Scholar 

  22. Martínez-Aranda S, Murillo J, García-Navarro P (2021) Comparison of new efficient 2D models for the simulation of bedload transport using the augmented Roe approach. Adv Water Resour 153:103931

  23. Mohamad AA (2011) Lattice Boltzmann method. Springer, London

    Book  Google Scholar 

  24. MohammadiArani R, Dehghan M, Abbaszadeh M (2022) Proper orthogonal decomposition-lattice Boltzmann method: simulating the air pollutant problem in street canyon areas. SIAM J Sci Comput 44(4):B885–B909

    Article  MathSciNet  Google Scholar 

  25. Murillo J, García-Navarro P (2010) An Exner-based coupled model for two-dimensional transient flow over erodible bed. J Comput Phys 229(23):8704–8732

    Article  MathSciNet  Google Scholar 

  26. Peng Y, Zhou JG, Burrows R (2011) Modelling solute transport in shallow water with the lattice Boltzmann method. Comput Fluids 50(1):181–188

    Article  MathSciNet  Google Scholar 

  27. Peng Y, Zhou JG, Zhang JM (2015) Mixed numerical method for bed evolution. In: Proceedings of the Institution of Civil Engineers-Water Management, vol 168. Thomas Telford Ltd, pp 3–15

  28. Peruzzetto M, Mangeney A, Bouchut F, Grandjean G, Levy C, Thiery Y, Lucas A (2021) Topography curvature effects in thin-layer models for gravity-driven flows without bed erosion. J Geophys Res Earth Surf 126(4):e2020JF005657

    Article  Google Scholar 

  29. Salmon R (1999) The lattice Boltzmann method as a basis for ocean circulation modeling. J Mar Res 57(3):503–535

    Article  Google Scholar 

  30. Shan X, Chen H (1993) Lattice Boltzmann model of simulating flows with multiple phases and components. Phys Rev E 47:1815

    Article  Google Scholar 

  31. Shan X, Chen H (1994) Simulation of non-ideal gases liquid–gas phase transitions by the lattice Boltzmann equation. Phys Rev E 49:2941

    Article  Google Scholar 

  32. Stipic D, Budinski L, Fabian J (2022) Sediment transport and morphological changes in shallow flows modelled with the lattice Boltzmann method. J Hydrol 606:127472

    Article  Google Scholar 

  33. Swift M, Osborn W, Yeomans J (1995) Lattice Boltzmann simulation of nonideal fluids. Phys Rev Lett 75:830–833

    Article  Google Scholar 

  34. Thömmes G, Seaïd M, Banda MK (2007) Lattice Boltzmann methods for shallow water flow applications. Int J Numer Methods Fluids 55(7):673–692

    Article  MathSciNet  Google Scholar 

  35. Van Thang P, Chopard B, Lefèvre L, Ondo DA, Mendes E (2010) Study of the 1D lattice Boltzmann shallow water equation and its coupling to build a canal network. J Comput Phys 229(19):7373–7400

    Article  MathSciNet  Google Scholar 

  36. Wolf-Gladrow DA (2000) Lattice-gas cellular automata and lattice Boltzmann models: an introduction. Springer, Berlin

    Book  Google Scholar 

  37. Wu W (2007) Computational river dynamics. NetLibrary Inc, CRC Press, Boca Raton

    Book  Google Scholar 

  38. Xia C-C, Li J, Cao Z-X, Liu Q-Q, Hu K-H (2018) A quasi single-phase model for debris flows and its comparison with a two-phase model. J Mt Sci 15:1071–1089

    Article  Google Scholar 

  39. Xia J, Lin B, Falconer RA, Wang G (2010) Modelling dam-break flows over mobile beds using a 2D coupled approach. Adv Water Resour 33(2):171–183

    Article  Google Scholar 

  40. Yue ZY, Cao ZX, Li X, Che T (2008) Two-dimensional coupled mathematical modeling of fluvial processes with intense sediment transport and rapid bed evolution. Sci China Ser G 51(9):1427–1438

    Article  Google Scholar 

  41. Zech Y, Soares-Frazão S, Spinewine B, Grelle NL (2008) Dam-break induced sediment movement: experimental approaches and numerical modelling. J Hydraul Res 46:176–190

    Article  Google Scholar 

  42. Zhou JG (2009) A lattice Boltzmann method for solute transport. Int J Numer Methods Fluids 61(8):848–863

    Article  MathSciNet  Google Scholar 

  43. Zhou JG (2004) Lattice Boltzmann methods for shallow water flows. Springer, Berlin

    Book  Google Scholar 

  44. Zhou JG (2014) Lattice Boltzmann morphodynamic model. J Comput Phys 270:255–264

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the reviewers for carefully reading this paper and for their comments and suggestions which really have improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Dehghan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

1.1 A.1: Chapman–Enskog analysis of the modified shallow water equation

From Eq. (8), the moments of equilibrium function can be obtained as follows:

$$\begin{aligned} \begin{aligned}&\sum _{\alpha }^{}\, f\,^{\text {eq}}_\alpha = h + z,\\&\sum _{\alpha }^{} {{\textbf{e}}_\alpha }_i \,\, f\,^{\text {eq}}_\alpha = h {\textbf{u}}_i,\\&\sum _{\alpha }^{} {{\textbf{e}}_\alpha }_i {{\textbf{e}}_\alpha }_j\,\, f\,^{\text {eq}}_\alpha = h{\textbf{u}}_i{\textbf{u}}_j + \frac{g}{2} h^2 \delta _{ij},\\&\sum _{\alpha }^{} {{\textbf{e}}_\alpha }_i {{\textbf{e}}_\alpha }_j {{\textbf{e}}_\alpha }_k \,\, f\,^{\text {eq}}_\alpha = \frac{{\text {e}}\,^2}{3}h\left( {\textbf{u}}_i \delta _{jk} + {\textbf{u}}_j \delta _{ik} +{\textbf{u}}_k \delta _{ij} \right) . \end{aligned} \end{aligned}$$
(24)

Also, mass and momentum of shallow water equation are conservative, so we have

$$\begin{aligned} \sum _{\alpha }^{} f_\alpha = h + z, \quad \sum _{\alpha }^{} {{\textbf{e}}_\alpha }_i \, f_\alpha = h {\textbf{u}}_i. \end{aligned}$$
(25)

Using Eqs. (5) and (7) gives the moments of force term as follows:

$$\begin{aligned} \begin{aligned} \sum _{\alpha }^{} q^{shw}_\alpha&= \sum _{\alpha }^{} \frac{1}{6{\text {e}}\,^2} {{\textbf{e}}_\alpha }_i \mathbf {{\mathcal {S}}}\,^{shw}_i = 0,\\ \sum _{\alpha }^{} {{\textbf{e}}_\alpha }_i q^{shw}_\alpha&= \sum _{\alpha }^{} \frac{1}{6{\text {e}}\,^2} {{\textbf{e}}_\alpha }_i {{\textbf{e}}_\alpha }_j \mathbf {{\mathcal {S}}}\,^{shw}_j = \mathbf {{\mathcal {S}}}\,^{shw}_i,\\ \sum _{\alpha }^{} {{\textbf{e}}_\alpha }_i {{\textbf{e}}_\alpha }_j q^{shw}_\alpha&= \sum _{\alpha }^{} \frac{1}{6{\text {e}}\,^2} {{\textbf{e}}_\alpha }_i {{\textbf{e}}_\alpha }_j {{\textbf{e}}_\alpha }_k \mathbf {{\mathcal {S}}}\,^{shw}_k = 0. \end{aligned} \end{aligned}$$
(26)

The multi-scale Chapman–Enskog expansion [12, 29, 43] is a tool to show that the lattice Boltzmann equation (6) with conditions (24)–(26) will recover (1a). Also, it helps finding \(\tau _f\) and error term too. This analysis was used for classical shallow water equation to create a discretized equilibrium distribution function required in LBM [29, 43].

Knowing \(\Delta x = e \Delta t\), helps rewriting (6) as follows:

$$\begin{aligned} \begin{aligned}&f_\alpha ({\textbf{x}} + {\textbf{e}}_\alpha \Delta t, t + \Delta t) - f_\alpha ({\textbf{x}}, t)\\&\quad = -\frac{\Delta t}{\tau _f} \, (f_\alpha ({\textbf{x}}, t)- f_\alpha ^{\text {eq}} ({\textbf{x}}, t)) \\&\qquad + \Delta t q^{shw}_\alpha \left({\textbf{x}} + \frac{1}{2} {\textbf{e}}_\alpha \Delta t,t +\frac{1}{2} \Delta t\right), \end{aligned} \end{aligned}$$
(27)

and using Taylor expansion around arbitrary point \(({\textbf{x}},t)\) gives

$$\begin{aligned} \begin{aligned}&\sum _{n=1}^{\infty } \frac{{\Delta t}^n}{n!} (\partial _t + {{\textbf{e}}_\alpha }_i \partial _i)^n f _\alpha ({\textbf{x}},t) \\&\quad = -\frac{\Delta t}{\tau _f} (f_\alpha ({\textbf{x}}, t)- f_\alpha ^{\text {eq}} ({\textbf{x}}, t)) \\&\qquad + \sum _{n=0}^{\infty } \frac{{\Delta t}^{n+1}}{2^n n!} (\partial _t + {{\textbf{e}}_\alpha }_i \partial _i)^n q^{shw}_\alpha ({\textbf{x}},t). \end{aligned} \end{aligned}$$
(28)

In Chapman–Enskog expansion literature, we assume that

$$\begin{aligned} \partial _t = \varepsilon \partial _{t_1} +\varepsilon ^2 \partial _{t_2}, \quad \partial _i = \varepsilon \partial _{i_1}, \quad q^{shw}_\alpha = \varepsilon q^{{(1)}^{shw}}_\alpha , \end{aligned}$$
(29)

and also, we consider the expansion of \(f_\alpha\) around \(f ^{(0)} _\alpha = f ^{\text {eq}} _\alpha\) as follows:

$$\begin{aligned} f_\alpha = f ^{(0)} _\alpha + \varepsilon f ^{(1)} _\alpha + \varepsilon ^2 f ^{(2)} _\alpha + \cdots , \end{aligned}$$
(30)

where \(\varepsilon\) is usually assumed as the order of Knudsen number. Equations (24), (25), and (30), give

$$\begin{aligned} \begin{array}{ll} \sum _{\alpha }^{}\, f\,^{(n)}_\alpha = 0,&\sum _{\alpha }^{} {{\textbf{e}}_\alpha }_i\, f\,^{(n)}_\alpha = 0, \end{array} \end{aligned}$$
(31)

where \(n=1,2,3,\ldots\).

Substituting Eqs. (29) and (30) into Eq. (28), results

$$\begin{aligned} \begin{aligned}&\sum _{n=1}^{\infty } \left( \frac{{\Delta t}^n}{n!} (\varepsilon \partial _{t_1} +\varepsilon ^2 \partial _{t_2} + \varepsilon {{\textbf{e}}_\alpha }_i \partial _{i_1})^n \right) \left( \sum _{k=0}^{\infty } {\varepsilon }^k f ^{(k)} _\alpha \right) \\&\quad = -\frac{\Delta t}{\tau _f} \left( \sum _{k=1}^{\infty } {\varepsilon }^k f ^{(k)} _\alpha \right) \\&\qquad + \varepsilon \sum _{n=0}^{\infty } \left( \frac{{\Delta t}^{n+1}}{2^n n!} (\varepsilon \partial _{t_1} +\varepsilon ^2 \partial _{t_2} + \varepsilon {{\textbf{e}}_\alpha }_i \partial _{i_1})^n \right) q^{{(1)}^{shw}}_\alpha , \end{aligned} \end{aligned}$$
(32)

and rounding Eq. (32) up to the second-order yields

$$\begin{aligned} \begin{aligned}&\varepsilon \left( \Delta t {\mathcal {D}} f ^{(0)} _\alpha + \frac{\Delta t}{\tau _f} f ^{(1)} _\alpha - \Delta t q^{{(1)}^{shw}}_\alpha \right) \\&\quad + \varepsilon ^2 \left( \left( \Delta t \partial _{t_2} + \frac{{\Delta t}^2}{2} {\mathcal {D}}\,^2 \right)\, f\,^{(0)}_\alpha + \Delta t {\mathcal {D}} f ^{(1)} _\alpha \right. \\&\left. \quad + \frac{\Delta t}{\tau _f} f ^{(2)} _\alpha - \frac{{\Delta t}^2}{2} {\mathcal {D}} q^{{(1)}^{shw}}_\alpha \right) = O({\varepsilon }^3), \end{aligned} \end{aligned}$$

where \({\mathcal {D}} = \left( \partial _{t_1} + {{\textbf{e}}_\alpha }_i \partial _{i_1} \right)\).

So the first-order of Chapman–Enskog expansion for LBE is as follows:

$$\begin{aligned} \Delta t {\mathcal {D}} f ^{(0)} _\alpha + \frac{\Delta t}{\tau _f} f ^{(1)} _\alpha - \Delta t q^{{(1)}^{shw}}_\alpha , \end{aligned}$$
(33)

and the second-order is

$$\begin{aligned}{} & {} \Delta t \partial _{t_2}\, f\,^{(0)}_\alpha + \frac{{\Delta t}^2}{2} {\mathcal {D}}\,^2\, f\,^{(0)}_\alpha + \Delta t {\mathcal {D}} f ^{(1)} _\alpha \nonumber \\{} & {} \quad + \frac{\Delta t}{\tau _f} f ^{(2)} _\alpha - \frac{{\Delta t}^2}{2} {\mathcal {D}} q^{{(1)}^{shw}}_\alpha . \end{aligned}$$
(34)

For sake of getting the second-order accuracy, we need to assume Eqs. (33) and (34) to be zero. So they can be written as

$$\begin{aligned}{} & {} {\mathcal {D}} f ^{(0)} _\alpha + \frac{1}{\tau _f} f ^{(1)} _\alpha - q^{{(1)}^{shw}}_\alpha =0, \end{aligned}$$
(35)
$$\begin{aligned}{} & {} \partial _{t_2}\, f\,^{(0)}_\alpha + \frac{{\Delta t}}{2} {\mathcal {D}}\,^2\, f\,^{(0)}_\alpha + {\mathcal {D}} f ^{(1)} _\alpha \nonumber \\{} & {} \quad + \frac{1}{\tau _f} f ^{(2)} _\alpha - \frac{{\Delta t}}{2} {\mathcal {D}} q^{{(1)}^{shw}}_\alpha =0. \end{aligned}$$
(36)

Finding \(f ^{(1)} _\alpha\) via Eq. (35) yields

$$\begin{aligned} f ^{(1)} _\alpha = -\tau _f \left( {\mathcal {D}} f ^{(0)} _\alpha - q^{{(1)}^{shw}}_\alpha \right) , \end{aligned}$$
(37)

and substituting it in Eq. (36) gives

$$\begin{aligned}{} & {} \partial _{t_2}\, f\,^{(0)}_\alpha - \left( \tau _f - \frac{\Delta t}{2}\right) {\mathcal {D}}\,^2\, f\,^{(0)}_\alpha \nonumber \\{} & {} \quad + \left( \tau _f - \frac{\Delta t}{2}\right) {\mathcal {D}} q^{{(1)}^{shw}}_\alpha + \frac{1}{\tau _f} f ^{(2)} _\alpha = 0. \end{aligned}$$
(38)

Substituting \({\mathcal {D}}\) into Eqs. (35) and (38) and also doing some rearranging give

$$\begin{aligned}&\partial _{t_1}\, f\,^{(0)}_\alpha + \partial _{i_1} {{\textbf{e}}_\alpha }_i\, f\,^{(0)}_\alpha = -\frac{1}{\tau _f} f ^{(1)} _\alpha + q^{{(1)}^{shw}}_\alpha , \end{aligned}$$
(39)
$$\begin{aligned}&\partial _{t_2}\, f\,^{(0)}_\alpha = -\frac{1}{\tau _f} f ^{(2)} _\alpha + \left(\tau _f - \frac{\Delta t}{2}\right) \left[ - \left( \partial _{t_1} q^{{(1)}^{shw}}_\alpha + \partial _{i_1} {{\textbf{e}}_\alpha }_i q^{{(1)}^{shw}}_\alpha \right) \right. \nonumber \\&\quad + \partial _{t_1} \left( \partial _{t_1}\, f\,^{(0)}_\alpha + \partial _{j_1} {{\textbf{e}}_\alpha }_j\, f\,^{(0)}_\alpha \right) \nonumber \\&\quad \left. + \partial _{i_1} \left( \partial _{t_1} {{\textbf{e}}_\alpha }_i\, f\,^{(0)}_\alpha + \partial _{j_1} {{\textbf{e}}_\alpha }_i {{\textbf{e}}_\alpha }_j\,\, f\,^{(0)}_\alpha \right) \right] . \end{aligned}$$
(40)

Calculating \(\sum _{\alpha }^{} \left( \text {Eq. } (39)\right)\), \(\sum _{\alpha }^{} \left( {{\textbf{e}}_\alpha }_i \text {Eq. }(39)\right)\), \(\sum _{\alpha }^{} \left( \text {Eq. }(40)\right)\), and \(\sum _{\alpha }^{} \left( {{\textbf{e}}_\alpha }_i \text {Eq. }(40)\right)\) using Eqs. (26) and (31) concludes

$$\begin{aligned}&\partial _{t_1} {\mathcal {F}}\,^{(0)}_0 + \partial _{i_1} {\mathcal {F}}\,^{(0)}_{i} = 0, \end{aligned}$$
(41)
$$\begin{aligned}&\partial _{t_1} {\mathcal {F}}\,^{(0)}_i + \partial _{i_1} {\mathcal {F}}\,^{(0)}_{ij} = \frac{1}{\varepsilon }\mathbf {{\mathcal {S}}}\,^{shw}_i, \end{aligned}$$
(42)
$$\begin{aligned}&\partial _{t_2} {\mathcal {F}}\,^{(0)}_0 = 0, \end{aligned}$$
(43)
$$\begin{aligned}&\partial _{t_2} {\mathcal {F}}\,^{(0)}_i = \left( \tau _f - \frac{\Delta t}{2}\right) \partial _{j_1} \left( \partial _{t_1} {\mathcal {F}}\,^{(0)}_{ij} + \partial _{k_1} {\mathcal {F}}\,^{(0)}_{ijk} \right) , \end{aligned}$$
(44)

where

$$\begin{aligned} \begin{aligned} {\mathcal {F}}\,^{(0)}_0&= \sum _{\alpha }^{}\, f\,^{(0)}_\alpha , \quad {\mathcal {F}}\,^{(0)}_i = \sum _{\alpha }^{} {{\textbf{e}}_\alpha }_i\, f\,^{(0)}_\alpha , \\ {\mathcal {F}}\,^{(0)}_{ij}&= \sum _{\alpha }^{} {{\textbf{e}}_\alpha }_i {{\textbf{e}}_\alpha }_j\, f\,^{(0)}_\alpha , \quad {\mathcal {F}}\,^{(0)}_{ijk} = \sum _{\alpha }^{} {{\textbf{e}}_\alpha }_i {{\textbf{e}}_\alpha }_j {{\textbf{e}}_\alpha }_k\, f\,^{(0)}_\alpha . \end{aligned} \end{aligned}$$

From Eq. (24), we obtain

$$\begin{aligned} \begin{aligned}&{\mathcal {F}}\,^{(0)}_0 = h + z,{} & {} {\mathcal {F}}\,^{(0)}_i = h {\textbf{u}}_i,\\&{\mathcal {F}}\,^{(0)}_{ij} = h{\textbf{u}}_i{\textbf{u}}_j + \frac{g}{2} h^2 \delta _{ij},{} & {} {\mathcal {F}}\,^{(0)}_{ijk} = \frac{{\text {e}}\,^2}{3}h\left( {\textbf{u}}_i \delta _{jk} + {\textbf{u}}_j \delta _{ik} +{\textbf{u}}_k \delta _{ij} \right) , \end{aligned} \end{aligned}$$

and substituting them into Eqs. (41)–(44), gives

$$\begin{aligned}{} & {} \partial _{t_1} ( h + z ) + \partial _{i_1} ( h {\textbf{u}}_i ) = 0, \end{aligned}$$
(45)
$$\begin{aligned}{} & {} \partial _{t_1} ( h {\textbf{u}}_i ) + \partial _{i_1} \left( h{\textbf{u}}_i{\textbf{u}}_j + \frac{g}{2} h^2 \delta _{ij} \right) = \frac{1}{\varepsilon } \mathbf {{\mathcal {S}}}\,^{shw}_i, \end{aligned}$$
(46)
$$\begin{aligned}{} & {} \partial _{t_2} ( h + z ) = 0, \end{aligned}$$
(47)
$$\begin{aligned}{} & {} \partial _{t_2} ( h {\textbf{u}}_i ) = \left(\tau _f - \frac{\Delta t}{2}\right) \partial _{j_1} \left( \partial _{t_1} \left( h{\textbf{u}}_i{\textbf{u}}_j + \frac{g}{2} h^2 \delta _{ij} \right) \right. \nonumber \\{} & {} \left. \quad + \partial _{k_1} \left( \frac{{\text {e}}\,^2}{3}h\left( {\textbf{u}}_i \delta _{jk} + {\textbf{u}}_j \delta _{ik} +{\textbf{u}}_k \delta _{ij} \right) \right) \right) . \end{aligned}$$
(48)

To recover Eq. (1a), we should calculate

$$\begin{aligned} \varepsilon \times (\text {Eq. } (45)) + \varepsilon ^2 \times (\text {Eq. } (47)), \end{aligned}$$

and

$$\begin{aligned} \varepsilon \times (\text {Eq. } (46)) + \varepsilon ^2 \times (\text {Eq. } (48)), \end{aligned}$$

which give

$$\begin{aligned}&\partial _t ( h + z ) + \partial _i ( h {\textbf{u}}_i ) = 0, \end{aligned}$$
(49)
$$\begin{aligned}&\partial _t ( h {\textbf{u}}_i ) + \partial _i \left( h{\textbf{u}}_i{\textbf{u}}_j + \frac{g}{2} h^2 \delta _{ij} \right) = -gh\left( \partial _i z + S_f^i \right) \nonumber \\&\quad + \left(\tau _f - \frac{\Delta t}{2}\right) \partial _j \left( \varepsilon \partial _{t_1} \left( h{\textbf{u}}_i{\textbf{u}}_j + \frac{g}{2} h^2 \delta _{ij} \right) \right. \nonumber \\&\left. \quad + \partial _k \left( \frac{{\text {e}}\,^2}{3}h \left( {\textbf{u}}_i \delta _{jk} + {\textbf{u}}_j \delta _{ik} +{\textbf{u}}_k \delta _{ij} \right) \right) \right) . \end{aligned}$$
(50)

Equation (1a) has been recovered with Eq. (49) but the second one contains some extra terms comparing with Eq. (50). So we need to do some rearranging on Eq. (50) to recover the second equation of shallow water and also find the error term. So rewriting Eq. (50), gives

$$\begin{aligned} \begin{aligned}&\partial _t ( h {\textbf{u}}_i ) + \partial _i \left( h{\textbf{u}}_i{\textbf{u}}_j + \frac{g}{2} h^2 \delta _{ij} \right) \\&\quad = \left( \frac{{\text {e}}\,^2}{3} (\tau _f - \frac{\Delta t}{2}) \right) \partial _j \partial _j \left( h {\textbf{u}}_i \right) \\&\qquad -gh\left( \partial _i z + S_f^i \right) \\&\qquad + \left( \frac{{\text {e}}\,^2}{3} (\tau _f - \frac{\Delta t}{2}) \right) \partial _j \left( \frac{3 \varepsilon }{{\text {e}}\,^2} \partial _{t_1} \left( h {\textbf{u}}_i {\textbf{u}}_j + \frac{g}{2} h^2 \delta _{ij} \right) \right. \\&\left. \qquad + \partial _k \left( h \left( {\textbf{u}}_j \delta _{ik} +{\textbf{u}}_k \delta _{ij} \right) \right) \right) . \end{aligned} \end{aligned}$$
(51)

Let

$$\begin{aligned} \nu _h = \frac{{\text {e}}\,^2}{3} \left( \tau _f - \frac{\Delta t}{2} \right) , \end{aligned}$$
(52)

then Eq. (51) yields

$$\begin{aligned}{} & {} \partial _t ( h {\textbf{u}}_i ) + \partial _i \left( h{\textbf{u}}_i{\textbf{u}}_j + \frac{g}{2} h^2 \delta _{ij} \right) \nonumber \\{} & {} \quad = \nu _h \partial _j \partial _j \left( h {\textbf{u}}_i \right) -gh\left( \partial _i z + S_f^i \right) + \mathbf {{\mathcal {E}}}\,^{shw}, \end{aligned}$$
(53)

where

$$\begin{aligned} \mathbf {{\mathcal {E}}}\,^{shw}= & {} \nu _h \partial _j \left( \frac{3 \varepsilon }{{\text {e}}\,^2} \partial _{t_1} \left( h {\textbf{u}}_i {\textbf{u}}_j + \frac{g}{2} h^2 \delta _{ij} \right) \right. \\{} & {} \left. + \partial _k \left( h \left( {\textbf{u}}_j \delta _{ik} +{\textbf{u}}_k \delta _{ij} \right) \right) \right) , \end{aligned}$$

is the error term. So, Eq. (53) is recovered (1a) with the error term \(O(\nu _h)\).

1.2 A.2: Chapman–Enskog analysis of the sediment suspended load

The moments of \(g^{\text {eq}}_\alpha\) can be calculated from Eq. (13), which they are as follows:

$$\begin{aligned} \sum _{\alpha }^{} g^{\text {eq}}_\alpha= & {} hc,\quad \sum _{\alpha }^{} {{\textbf{e}}_\alpha }_i g^{\text {eq}}_\alpha = h c {\textbf{u}}_i,\quad \nonumber \\ \sum _{\alpha }^{} {{\textbf{e}}_\alpha }_i {{\textbf{e}}_\alpha }_j g^{\text {eq}}_\alpha= & {} c_s^2 h c \delta _{ij}. \end{aligned}$$
(54)

Also, the zeroth moment of \(g_\alpha\) is as follows:

$$\begin{aligned} \sum _{\alpha }^{} g_\alpha = h c, \end{aligned}$$
(55)

and using Eqs. (5) and (12), we have

$$\begin{aligned} \sum _{\alpha }^{} q^{c}_\alpha = \mathbf {{\mathcal {S}}}\,^{c}, \quad \sum _{\alpha }^{} {{\textbf{e}}_\alpha }_i q^{c}_\alpha = 0, \end{aligned}$$
(56)

which they are the moments of \(q^{c}_\alpha\). We use multi-scale Chapman–Enskog expansion [12, 43] to show that the second-order lattice Boltzmann formula (11) with assumptions Eqs. (12) and (13) can recover the convection–diffusion Equation (1b). By assuming \(\Delta x = e \Delta t\), Eq. (11) can be written as follows:

$$\begin{aligned} \begin{aligned}&g_\alpha ({\textbf{x}} + {\textbf{e}}_\alpha \Delta t, t + \Delta t) - g_\alpha ({\textbf{x}}, t) \\&\quad = -\frac{\Delta t}{\tau _g} (g_\alpha ({\textbf{x}}, t)- g_\alpha ^{\text {eq}} ({\textbf{x}}, t)) \\&\qquad + \Delta t q^{c}_\alpha \left({\textbf{x}} + \frac{1}{2} {\textbf{e}}_\alpha \Delta t,t +\frac{1}{2} \Delta t\right), \end{aligned} \end{aligned}$$
(57)

and using Taylor expansion around \(({\textbf{x}},t)\) gives

$$\begin{aligned} \begin{aligned}&\sum _{n=1}^{\infty } \frac{{\Delta t}^n}{n!} (\partial _t + {{\textbf{e}}_\alpha }_i \partial _i)^n g_\alpha ({\textbf{x}},t) \\&\quad = -\frac{\Delta t}{\tau _g} (g_\alpha ({\textbf{x}}, t)- g_\alpha ^{\text {eq}} ({\textbf{x}}, t)) \\&\qquad + \sum _{n=1}^{\infty } \frac{{\Delta t}^{n+1}}{2^n n!} (\partial _t + {{\textbf{e}}_\alpha }_i \partial _i)^n q^{c}_\alpha ({\textbf{x}},t). \end{aligned} \end{aligned}$$
(58)

In Chapman–Enskog expansion literature, we assume that

$$\begin{aligned} \partial _t = \varepsilon \partial _{t_1} +\varepsilon ^2 \partial _{t_2}, \quad \partial _i = \varepsilon \partial _{i_1}, \quad q^{c}_\alpha = \varepsilon q^{{(1)}^{c}}_\alpha , \end{aligned}$$
(59)

and also we consider the expansion of \(g_\alpha\) around \(g^{(0)} _\alpha = g^{\text {eq}} _\alpha\) as follows:

$$\begin{aligned} g_\alpha = g ^{(0)} _\alpha + \varepsilon g ^{(1)} _\alpha + \varepsilon ^2 g ^{(2)} _\alpha + \cdots , \end{aligned}$$
(60)

where \(\varepsilon\) is usually assumed as the order of Knudsen number. Equations (54), (55) and (60), give

$$\begin{aligned} \sum _{\alpha }^{} g^{(n)}_\alpha = 0, \end{aligned}$$
(61)

where \(n=1,2,3,\ldots\).

Substituting Eqs. (59) and (60) into Eq. (58), yields

$$\begin{aligned} \begin{aligned}&\sum _{n=1}^{\infty } \left( \frac{{\Delta t}^n}{n!} (\varepsilon \partial _{t_1} +\varepsilon ^2 \partial _{t_2} + \varepsilon {{\textbf{e}}_\alpha }_i \partial _{i_1})^n \right) \left( \sum _{k=0}^{\infty } {\varepsilon }^k g ^{(k)} _\alpha \right) \\&\quad = -\frac{\Delta t}{\tau _g} \left( \sum _{k=1}^{\infty } {\varepsilon }^k g ^{(k)} _\alpha \right) \\&\qquad + \varepsilon \sum _{n=0}^{\infty } \left( \frac{{\Delta t}^{n+1}}{2^n n!} (\varepsilon \partial _{t_1} +\varepsilon ^2 \partial _{t_2} + \varepsilon {{\textbf{e}}_\alpha }_i \partial _{i_1})^n \right) q^{{(1)}^{c}}_\alpha , \end{aligned} \end{aligned}$$
(62)

and with rounding Eq. (62) up to second-order of \(\varepsilon ,\) we obtain

$$\begin{aligned} \begin{aligned}&\varepsilon \left( \Delta t {\mathcal {D}} g ^{(0)} _\alpha + \frac{\Delta t}{\tau _g} g ^{(1)} _\alpha - \Delta t q^{{(1)}^{c}}_\alpha \right) \\&\quad + \varepsilon ^2 \left( \left( \Delta t \partial _{t_2} + \frac{{\Delta t}^2}{2} {\mathcal {D}}\,^2 \right) g^{(0)}_\alpha + \Delta t {\mathcal {D}} g ^{(1)} _\alpha \right. \\&\left. \quad + \frac{\Delta t}{\tau _g} g ^{(2)} _\alpha - \frac{{\Delta t}^2}{2} {\mathcal {D}} q^{{(1)}^{c}}_\alpha \right) = O({\varepsilon }^3), \end{aligned} \end{aligned}$$

where \({\mathcal {D}} = \left( \partial _{t_1} + {{\textbf{e}}_\alpha }_i \partial _{i_1} \right)\). So to get the accuracy of second-order, we need to assume

$$\begin{aligned}&{\mathcal {D}} g ^{(0)} _\alpha + \frac{1}{\tau _g} g ^{(1)} _\alpha - q^{{(1)}^{c}}_\alpha =0, \end{aligned}$$
(63)
$$\begin{aligned}&\partial _{t_2} g^{(0)}_\alpha + \frac{\Delta t}{2} {\mathcal {D}}\,^2 g^{(0)}_\alpha + {\mathcal {D}} g ^{(1)} _\alpha + \frac{1}{\tau _g} g ^{(2)} _\alpha - \frac{{\Delta t}}{2} {\mathcal {D}} q^{{(1)}^{c}}_\alpha =0. \end{aligned}$$
(64)

Equations (63) and (64) lead to

$$\begin{aligned}&\partial _{t_1} g^{(0)}_\alpha + \partial _{i_1} {{\textbf{e}}_\alpha }_i g^{(0)}_\alpha = -\frac{1}{\tau _g} g ^{(1)} _\alpha + q^{{(1)}^{c}}_\alpha , \end{aligned}$$
(65)
$$\begin{aligned}&\partial _{t_2} g^{(0)}_\alpha = -\frac{1}{\tau _g} g ^{(2)} _\alpha + \left(\tau _g - \frac{\Delta t}{2}\right) \left[ - \left( \partial _{t_1} q^{{(1)}^{c}}_\alpha + \partial _{i_1} {{\textbf{e}}_\alpha }_i q^{{(1)}^{c}}_\alpha \right) \right. \nonumber \\&\quad ~ + \partial _{t_1} \left( \partial _{t_1} g^{(0)}_\alpha + \partial _{j_1} {{\textbf{e}}_\alpha }_j g^{(0)}_\alpha \right) \nonumber \\&\quad \left. + \partial _{i_1} \left( \partial _{t_1} {{\textbf{e}}_\alpha }_i g^{(0)}_\alpha + \partial _{j_1} {{\textbf{e}}_\alpha }_i {{\textbf{e}}_\alpha }_j g^{(0)}_\alpha \right) \right] . \end{aligned}$$
(66)

Calculating \(\sum _{\alpha }^{}\) (Eq. (65)) and \(\sum _{\alpha }^{}\) (Eq. (66)), with help of Eq. (56) and Eq. (61) gives

$$\begin{aligned}&\partial _{t_1} {\mathcal {G}}\,^{(0)}_0 + \partial _{i_1} {\mathcal {G}}\,^{(0)}_{i} = \frac{1}{\varepsilon } \mathbf {{\mathcal {S}}}\,^{c}, \end{aligned}$$
(67)
$$\begin{aligned}&\partial _{t_2} {\mathcal {G}}\,^{(0)}_0 = \left(\tau _g - \frac{\Delta t}{2}\right) \partial _{i_1} \left( \partial _{t_1} {\mathcal {G}}\,^{(0)}_{i} + \partial _{j_1} {\mathcal {G}}\,^{(0)}_{ij} \right) , \end{aligned}$$
(68)

where

$$\begin{aligned} {\mathcal {G}}\,^{(0)}_0= & {} \sum _{\alpha }^{} g^{(0)}_\alpha ,\quad {\mathcal {G}}\,^{(0)}_i = \sum _{\alpha }^{} {{\textbf{e}}_\alpha }_i g^{(0)}_\alpha ,~~~~~\\ {\mathcal {G}}\,^{(0)}_{ij}= & {} \sum _{\alpha }^{} {{\textbf{e}}_\alpha }_i {{\textbf{e}}_\alpha }_j g^{(0)}_\alpha , \end{aligned}$$

and from Eq. (54), we obtain

$$\begin{aligned} {\mathcal {G}}\,^{(0)}_0 = h c, \quad {\mathcal {G}}\,^{(0)}_i = h c {\textbf{u}}_i,\quad {\mathcal {G}}\,^{(0)}_{ij} = c_s^2 h c \delta _{ij}, \end{aligned}$$

and substituting them into Eqs. (67) and (68) gives

$$\begin{aligned}{} & {} \partial _{t_1} ( h c ) + \partial _{i_1} ( h c {\textbf{u}}_i ) = \frac{1}{\varepsilon } \mathbf {{\mathcal {S}}}\,^{c}, \end{aligned}$$
(69)
$$\begin{aligned}{} & {} \partial _{t_2} ( hc ) = \left(\tau _g - \frac{\Delta t}{2}\right) \partial _{i_1} \left( \partial _{t_1} (h c {\textbf{u}}_i) + \partial _{j_1} (c_s^2 h c \delta _{ij}) \right) . \end{aligned}$$
(70)

To recover Eq. (1b), we should calculate

$$\begin{aligned} \varepsilon \times \text {Eq. } (69) + \varepsilon ^2 \times \text {Eq. } (70), \end{aligned}$$

which gives

$$\begin{aligned} \partial _t ( h c ) + \partial _i ( h c{\textbf{u}}_i ) = E-D + \partial _i (D_c \partial _i (h c)) +{\mathcal {E}}\,^c, \end{aligned}$$
(71)

where

$$\begin{aligned} D_c = c_s^2 \left( \tau _g - \frac{\Delta t}{2}\right) , \end{aligned}$$
(72)

is the diffusion coefficient and \({\mathcal {E}}\,^c = (\tau _g - \frac{\Delta t}{2}) \partial _i \partial _{t_1} (\varepsilon h c {\textbf{u}}_i)\) is the error term. So Eq. (1b) is recovered from lattice Boltzmann equation.

1.3 A.3: Chapman–Enskog analysis of the morphological bed load

The moments of \(l^{\text {eq}}_\alpha\) can be obtained from Eq. (21), which they are as follows:

$$\begin{aligned} \sum _{\alpha }^{} l^{\text {eq}}_\alpha= & {} z,\quad \sum _{\alpha }^{} {{\textbf{e}}_\alpha }_i l^{\text {eq}}_\alpha = \xi {\textbf{u}}_i,\quad \nonumber \\ \sum _{\alpha }^{} {{\textbf{e}}_\alpha }_i {{\textbf{e}}_\alpha }_j l^{\text {eq}}_\alpha= & {} c_s^2 z \delta _{ij}. \end{aligned}$$
(73)

Also, the zeroth moment of \(l_\alpha\) (mass in convection–diffusion is conservative) is as follows:

$$\begin{aligned} \sum _{\alpha }^{} l_\alpha = z, \end{aligned}$$
(74)

and using Eqs. (5) and (20) concludes

$$\begin{aligned} \sum _{\alpha }^{} q^{z}_\alpha = \mathbf {{\mathcal {S}}}\,^{z}, \quad \sum _{\alpha }^{} {{\textbf{e}}_\alpha }_i q^{z}_\alpha = 0, \end{aligned}$$
(75)

which they are the moments of \(q^{z}_\alpha\). We don’t mention the Chapman–Enskog analysis here, since it is the same as discussed in 1. But from it, the truncation error is

$$\begin{aligned} {\mathcal {E}}\,^z = \left( \tau _l - \frac{\Delta t}{2}\right) \partial _i \partial _{t_1} (\varepsilon \xi {\textbf{u}}_i). \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MohammadiArani, R., Dehghan, M. & Abbaszadeh, M. Morphodynamic shallow layer equations featuring bed load and suspended sediment with lattice Boltzmann method. Engineering with Computers 40, 1065–1092 (2024). https://doi.org/10.1007/s00366-023-01842-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-023-01842-7

Keywords

Navigation