This section is devoted to the variational derivation of nonlocal strong forms of solid mechanics, including hyperelasticity, thin plate, gradient elasticity, electro-magnetic-elasticity theory and phase-field fracture method. The strong form is suitable for theoretical analysis as well as explicit time integration. For the fully implicit simulation of various PDEs, the reader is referred to NOM for PDEs [65,66,67,68,69, 72].
Nonlocal form for hyperelasticity
Consider the energy density of a hyperelasticity as \(\psi :=\psi ({\varvec{F}})\), where \({\varvec{F}}=\nabla {\varvec{u}}+{\varvec{I}}\). The balance equation for the hyperelastic solid is
$$\begin{aligned} \nabla \cdot {\varvec{P}}+{\varvec{b}}=0 \text{ on } \Omega \end{aligned}$$
(40)
with boundary conditions \({\varvec{u}}={\varvec{u}}_0 \text{ on } \Gamma _D\) and \({\varvec{P}}\cdot {\varvec{n}}={\varvec{t}}_0 \text{ on } \Gamma _N\), where \({\varvec{u}}_0\) is the specified displacement and \({\varvec{t}}_0\) is the prescribed traction load, \({\varvec{P}}=\frac{\partial \psi }{\partial {\varvec{F}}}\), the first Piola-Kirchhoff stress, \({\varvec{b}}\) is the body force density.
Derivation based on variational principle
The variation of strain energy over the domain is
$$\begin{aligned} \delta {\mathcal {F}}&=\int _{\Omega } \delta \psi ({\varvec{F}}) \, \mathrm{d}V=\int _{\Omega } \frac{\partial \psi }{\partial {\varvec{F}}} :\delta {\varvec{F}}\, \mathrm{d}V\nonumber \\&=\int _{\Omega } {\varvec{P}} :\nabla (\delta {\varvec{u}})\, \mathrm{d}V\nonumber \\&=\int _{\Omega } {\varvec{P}}_i :\int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij}) \delta {\varvec{u}}_{ij}\otimes {\varvec{g}}_{ij} \, \mathrm{d}V_j\, \mathrm{d}V_i\nonumber \\&=\int _{\Omega } \int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij}) {\varvec{P}}_i :\delta {\varvec{u}}_{ij}\otimes {\varvec{g}}_{ij} \, \mathrm{d}V_j\, \mathrm{d}V_i\nonumber \\&=\int _{\Omega } \int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij}) ( {\varvec{P}}_i\cdot {\varvec{g}}_{ij})\cdot \delta {\varvec{u}}_{ij} \, \mathrm{d}V_j\, \mathrm{d}V_i\nonumber \\&=\underbrace{\int _{\Omega } \int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij}) ( {\varvec{P}}_i\cdot {\varvec{g}}_{ij}) \cdot (\delta {\varvec{u}}_{j}-\delta {\varvec{u}}_i) \, \mathrm{d}V_j\, \mathrm{d}V_i}_{\text {by Eq.} 2}\nonumber \\&=\int _{\Omega } \Big (\int _{{\mathcal {S}}_i'} \omega (\varvec{r}_{ji}){\varvec{P}}_j \cdot {\varvec{g}}_{ji} \, \mathrm{d}V_j-\int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij}) {\varvec{P}}_i \cdot {\varvec{g}}_{ij} \, \mathrm{d}V_j\Big )\cdot \delta \varvec{u}_i\, \mathrm{d}V_i \end{aligned}$$
(41)
In above derivation, we replace the gradient operator with nonlocal gradient, e.g. \({\tilde{\nabla }}\otimes {\varvec{u}}_i\rightarrow \int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij}){\varvec{u}}_{ij} \otimes {\varvec{g}}_{ij} \, \mathrm{d}V_j\) in Eq. 27, and the relation \({\varvec{A}}:{\varvec{a}}\otimes {\varvec{b}}= ({\varvec{A}}\cdot {\varvec{b}})\cdot {\varvec{a}}\) for second-order tensor \({\varvec{A}}\) and vectors \({\varvec{a}},{\varvec{b}}\) is employed.
The variational of external body force energy
$$\begin{aligned} \delta {\mathcal {F}}_{ext}=\int _{\Omega } \delta {\varvec{u}} \cdot {\varvec{b}} \, \mathrm{d}V \end{aligned}$$
(42)
For any \(\delta {\varvec{u}}_i\), \(\delta {\mathcal {F}}-\delta {\mathcal {F}}_{ext}=0\) leads to the nonlocal governing equations for elasticity
$$\begin{aligned} \int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij}) {\varvec{P}}_i \cdot {\varvec{g}}_{ij}\, \mathrm{d}V_j-\int _{{\mathcal {S}}_i'} \omega (\varvec{r}_{ji}) {\varvec{P}}_j \cdot {\varvec{g}}_{ji}\, \mathrm{d}V_j +{\varvec{b}}=0 \end{aligned}$$
(43)
Considering the effect of inertial force \(\rho \ddot{{\varvec{u}}}_i\) per unit volume, and replacing the dual-support with dual-horizon, we obtain the equations of motion for dual-horizon peridynamics
$$\begin{aligned} \int _{{\mathcal {H}}_i} \omega (\varvec{r}_{ij}) {\varvec{P}}_i \cdot {\varvec{g}}_{ij}\, \mathrm{d}V_j-\int _{{\mathcal {H}}_i'} \omega (\varvec{r}_{ji}) {\varvec{P}}_j \cdot {\varvec{g}}_{ji}\, \mathrm{d}V_j +{\varvec{b}}_i=\rho \ddot{{\varvec{u}}}_i \end{aligned}$$
(44)
If the sizes of horizons for all material points are the same, the dual-horizon peridynamics degenerates to the conventional constant horizon peridynamics.
For any specific strain energy density (for example, isotropic/anisotropic linear/nonlinear elasticity), the explicit form of \({\varvec{P}}\) can be derived straightforwardly. In the section of numerical examples, we consider the linear isotropic elasticity, which can be viewed as a special case of the hyperelasticity.
Derivation based on weighted residual method
Beside the derivation based on strain energy density, the nonlocal strong form can be derived by weighted residual method. Consider the governing equations for hyperelasticity , the weak form of Eq. 40 for any trial vector becomes
$$\begin{aligned} 0&=\int _{\Omega } {\varvec{v}}\cdot \nabla \cdot {\varvec{P}}+{\varvec{v}}\cdot {\varvec{b}} \, \mathrm{d}V\nonumber \\&=\int _{\Omega } -\nabla {\varvec{v}}: {\varvec{P}}+{\varvec{v}}\cdot {\varvec{b}}\, \mathrm{d}V+\int _{\Gamma } {\varvec{P}} \cdot {\varvec{n}} \cdot {\varvec{v}}\, \mathrm{d}S\nonumber \\&=\int _{\Omega } -\Big (\int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij}){\varvec{v}}_{ij} \otimes {\varvec{g}}_{ij} \, \mathrm{d}V_j\Big ): \nonumber \\&\quad {\varvec{P}}_i+{\varvec{v}}_i\cdot {\varvec{b}} \, \mathrm{d}V_i+\int _{\Gamma } {\varvec{P}} \cdot {\varvec{n}} \cdot {\varvec{v}} \, \mathrm{d}S \end{aligned}$$
(45)
Let us focus on the integral in \(\Omega \), the first term in above equation can be written as
$$\begin{aligned}&\int _{\Omega } -\Big (\int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij}){\varvec{v}}_{ij} \otimes {\varvec{g}}_{ij} \, \mathrm{d}V_j\Big ): {\varvec{P}}_i \, \mathrm{d}V_i\nonumber \\&= \underbrace{\int _{\Omega } -\Big (\int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij}) {\varvec{P}}_i\cdot {\varvec{g}}_{ij} \cdot ({\varvec{v}}_{j}-{\varvec{v}}_i) \, \mathrm{d}V_j\Big ) \, \mathrm{d}V_i}_{\text {by Eq.}2}\nonumber \\&=\int _{\Omega } \Big (\int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij}) {\varvec{P}}_i\cdot {\varvec{g}}_{ij} \, \mathrm{d}V_j-\int _{{\mathcal {S}}_i'} \omega (\varvec{r}_{ji}) {\varvec{P}}_j\cdot {\varvec{g}}_{ji}\, \mathrm{d}V_j\Big )\cdot {\varvec{v}}_i \, \mathrm{d}V_i \end{aligned}$$
(46)
For any \({\varvec{v}}_i\), the weak form being zero leads to
$$\begin{aligned} \int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij}) {\varvec{P}}_i\cdot {\varvec{g}}_{ij} \, \mathrm{d}V_j-\int _{{\mathcal {S}}_i'} \omega (\varvec{r}_{ji}) {\varvec{P}}_j\cdot {\varvec{g}}_{ji}\, \mathrm{d}V_j+{\varvec{b}}=0 \end{aligned}$$
which is identical to Eq. 43. As being more general than the energy method, the weighted residual method can be used to convert PDEs that have no energy functional to nonlocal integral forms.
Nonlocal thin plate theory
The thin plate theory is widely used in engineering applications [73]. The basic assumption of thin plate include: (1) the thickness of the plate is much smaller than the length inside the mid-plane; (2) the deflection is much smaller than the thickness of the plate so that higher-order effect is neglectable; (3) the stress along the thickness direction is assumed as zero, e.g. \(\sigma _z\approx 0\) and the points in the midplane have no displacement parallel to the midplane, e.g. \(u(x,y,0)=v(x,y,0)\approx 0\); (4) the normal of the mid-plane remains perpendicular to the mid-plane after deformation. Then the plate bending can be simplified into 2D problem and the displacements, strain and stress can be described by the deflection on the mid-plane
$$\begin{aligned} u(x, y, z)&=-z \frac{\partial w}{\partial x} \end{aligned}$$
(47)
$$\begin{aligned} v(x, y, z)&=-z \frac{\partial w}{\partial y} \end{aligned}$$
(48)
$$\begin{aligned} w(x, y, z)&\simeq w(x, y, 0) \cong w(x, y). \end{aligned}$$
(49)
The generalized strain is the Hessian operator on the deflection
$$\begin{aligned} {\varvec{\kappa }}=\nabla ^2 w=\begin{pmatrix}w_{,xx}&{} w_{,xy}\\ w_{,xy}&{}w_{,yy}\end{pmatrix} \end{aligned}$$
(50)
with nonlocal correspondence and its variation
$$\begin{aligned} {\varvec{\kappa }}&={\tilde{\nabla }}^2 w:=\int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij}) {\varvec{h}}_{ij} w_{ij} \, \mathrm{d}V_j \end{aligned}$$
(51)
$$\begin{aligned} \delta {\varvec{\kappa }}&=\int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij}) {\varvec{h}}_{ij} \delta w_{ij} \, \mathrm{d}V_j \end{aligned}$$
(52)
The bending moment tensor \({\varvec{M}}\), the general stress for isotropic thin plate, is given by
$$\begin{aligned} \varvec{M}=\left( \begin{array}{cc} M_{xx} &{} M_{xy} \\ M_{xy} &{} M_{yy} \end{array}\right) =D_{0}\big (\nu \text{ tr } (\varvec{\kappa }) \varvec{I}_{2 \times 2}+(1-\nu ) \varvec{\kappa }\big ) \end{aligned}$$
(53)
where \(D_{0}=\frac{E t^{3}}{12\left( 1-\nu ^{2}\right) }\) and t is the thickness of the plate.
Based on the principle of minimum potential energy, the energy functional for the governing equation is
$$\begin{aligned} {\mathcal {F}}_{int}=\int _{\Omega } \frac{1}{2} {\varvec{M}}:{\varvec{\kappa }} -q w \, \mathrm{d}S \end{aligned}$$
(54)
and for the boundary condition can be expressed as
$$\begin{aligned} {\mathcal {F}}_{ext}=\int _{S_3} {\bar{V}}_n w\, \mathrm{d}\Gamma -\int _{S_2+S_3} {\bar{M}}_n \frac{\partial w}{\partial n} \, \mathrm{d}\Gamma \end{aligned}$$
(55)
where q is the external transverse load on the mid-plane, \({\bar{V}}_n\) is the shear force load on boundary \(S_3\) and \({\bar{M}}_n\) is the prescribed moment on boundary \(S_2+S_3\). For simplicity, we leave the integral on the boundary for later consideration. The variation of the internal energy functional is
$$\begin{aligned} \delta {\mathcal {F}}_{int}&=\int _{\Omega } {\varvec{M}}: \delta {\varvec{\kappa }}-q \delta w \, \mathrm{d}S\nonumber \\&=\int _{\Omega } {\varvec{M}}_i: \int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij}) {\varvec{h}}_{ij} \delta w_{ij} \, \mathrm{d}S_j -q_i \delta w_i\, \mathrm{d}S_i\nonumber \\&=\underbrace{\int _{\Omega }\int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij}) {\varvec{M}}_i: {\varvec{h}}_{ij} (\delta w_{j}-\delta w_i) \, \mathrm{d}S_j}_{\text {by Eq.}2} -\int _{\Omega }q_i \delta w_i \, \mathrm{d}S_i\nonumber \\&=\int _{\Omega }\Big ( \int _{{\mathcal {S}}_i'} \omega (\varvec{r}_{ij}) {\varvec{M}}_j: {\varvec{h}}_{ji}\, \mathrm{d}S_j\nonumber \\&\quad - \int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij}) {\varvec{M}}_i: {\varvec{h}}_{ij} \, \mathrm{d}S_j-q_i\Big ) \delta w_i \, \mathrm{d}S_i \end{aligned}$$
(56)
The variation of the external energy function is
$$\begin{aligned} \delta {\mathcal {F}}_{ext}&=\int _{S_3} {\bar{V}}_n \delta w\, \mathrm{d}\Gamma -\int _{S_2+S_3} {\bar{M}}_n \frac{\partial \delta w}{\partial n} \, \mathrm{d}\Gamma \nonumber \\&=\int _{S_3} {\bar{V}}_n \delta w\, \mathrm{d}\Gamma -\int _{S_2+S_3} {\bar{M}}_n \nabla \delta w\cdot {\varvec{n}} \, \mathrm{d}\Gamma \nonumber \\&=\int _{S_3} {\bar{V}}_n \delta w\, \mathrm{d}\Gamma -\int _{S_2+S_3} {\bar{M}}_{ni} \nonumber \\&\quad \int _{{\mathcal {S}}_i}\omega (\varvec{r}_{ij}) \delta w_{ij} {\varvec{g}}_{ij} \, \mathrm{d}V_j \cdot {\varvec{n}}_i \, \mathrm{d}\Gamma _i\nonumber \\&=\int _{S_3} {\bar{V}}_n \delta w\, \mathrm{d}\Gamma -\int _{S_2+S_3} \int _{{\mathcal {S}}_i}\omega (\varvec{r}_{ij})\nonumber \\&\quad {\bar{M}}_{ni} {\varvec{g}}_{ij} \cdot {\varvec{n}}_i \delta w_{ij}\, \mathrm{d}V_j \, \mathrm{d}\Gamma _i\nonumber \\&=\int _{S_3} {\bar{V}}_n \delta w\, \mathrm{d}\Gamma -\int _{S_2+S_3} \Big ( \int _{{\mathcal {S}}_i'}\omega (\varvec{r}_{ji}){\bar{M}}_{nj} {\varvec{g}}_{ji} \cdot {\varvec{n}}_j \, \mathrm{d}V_j \nonumber \\&\quad -\int _{{\mathcal {S}}_i}\omega (\varvec{r}_{ij}){\bar{M}}_{ni} {\varvec{g}}_{ij} \cdot {\varvec{n}}_i \, \mathrm{d}V_j\Big )\delta w_i \, \mathrm{d}\Gamma _i \end{aligned}$$
(57)
For any \(\delta w_i\), \(\delta {\mathcal {F}}_{int}-\delta \mathcal F_{ext}=0\) leads to the nonlocal thin plate equation for material point in domain \(\Omega \)
$$\begin{aligned}&\int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij}) {\varvec{M}}_i: {\varvec{h}}_{ij} \, \mathrm{d}V_j\nonumber \\&\quad - \int _{{\mathcal {S}}_i'} \omega (\varvec{r}_{ij}) {\varvec{M}}_j: {\varvec{h}}_{ji}\, \mathrm{d}V_j+q_i=0 \end{aligned}$$
(58)
The additional nonlocal form for material point applied with the moment boundary condition is
$$\begin{aligned}&\int _{{\mathcal {S}}_i}\omega (\varvec{r}_{ij}){\bar{M}}_{ni} {\varvec{g}}_{ij} \cdot {\varvec{n}}_i \, \mathrm{d}V_j \nonumber \\&\quad - \int _{{\mathcal {S}}_i'}\omega (\varvec{r}_{ji}){\bar{M}}_{nj} {\varvec{g}}_{ji} \cdot {\varvec{n}}_j \, \mathrm{d}V_j=0 \end{aligned}$$
(59)
Based on the D’Alembert’s principle, the equation of motion considering the effect of inertial force \(\rho t\ddot{w}_i\) per unit area is
$$\begin{aligned}&\int _{{\mathcal {S}}_i'} \omega (\varvec{r}_{ij}) {\varvec{M}}_j: {\varvec{h}}_{ji}\, \mathrm{d}V_j\nonumber \\&\quad - \int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij}) {\varvec{M}}_i: {\varvec{h}}_{ij} \, \mathrm{d}V_j+q_i=t\rho \ddot{w}_i \end{aligned}$$
(60)
For clamped boundary condition \(w_{,n}=\nabla w\cdot {\varvec{n}}=0\), the nonlocal form is
$$\begin{aligned} \int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij}) w_{ij} {\varvec{g}}_{ij}\cdot {\varvec{n}}_i\, \mathrm{d}V_j=0 \end{aligned}$$
(61)
Compared with the local governing equation for thin plate \(\nabla ^2:{\varvec{M}}+q=t\rho \ddot{w}\), we can find the correspondence between local and nonlocal formulation
$$\begin{aligned}&\nabla ^2:{\varvec{M}}\rightarrow {\tilde{\nabla }}^2: {\varvec{M}}_i:= \int _{{\mathcal {S}}_i'} \omega (\varvec{r}_{ji}) {\varvec{M}}_j: {\varvec{h}}_{ji}\, \mathrm{d}V_j\nonumber \\&\quad - \int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij}) {\varvec{M}}_i: {\varvec{h}}_{ij} \, \mathrm{d}V_j \end{aligned}$$
(62)
The nonlocal derivation for thin plate can be extended to composite plate and functional gradient plate theories.
Nonlocal gradient elasticity
Gradient theories emerge from considerations of the microstructure in the material at micro-scale, where a mass point after homogenization is not the center of a micro-volume and the rotation of the micro-volume depends on the moment stress/couple stress as well as the Cauchy stress. Gradient elasticity generalizes the elasticity theory by employing higher order terms of the deformation gradient or the gradient of the strain tensor. Generally, the energy density functional can be assumed as \(\psi :=\psi ({\varvec{F}},\nabla {\varvec{F}})=\psi (\nabla {\varvec{u}}, \nabla ^2 {\varvec{u}})\), where \({\varvec{F}}=\nabla {\varvec{u}}+{\varvec{I}}\). The total potential energy in domain is
$$\begin{aligned} {\mathcal {F}}=\int _{\Omega }\psi -{\varvec{b}}\cdot {\varvec{u}} \, \mathrm{d}V \end{aligned}$$
(63)
The stress tensor and generalized stress tensor of first Piola-Kirchhoff type are defined as
$$\begin{aligned} {\varvec{P}}&= \frac{\partial \psi }{\partial {\varvec{F}}} \end{aligned}$$
(64)
$$\begin{aligned} {\varvec{\Sigma }}&= \frac{\partial \psi }{\partial \nabla {\varvec{F}}} \end{aligned}$$
(65)
The variation of the total internal energy is
$$\begin{aligned} \delta {\mathcal {F}}&=\int _{\Omega }\Big ( \frac{\partial \psi }{\partial {\varvec{F}}}: \nabla \delta {\varvec{u}}\nonumber \\&\quad + \frac{\partial \psi }{\partial \nabla {\varvec{F}}}\dot{:} \nabla ^2 \delta {\varvec{u}}-{\varvec{b}} \cdot \delta {\varvec{u}}\Big ) \, \mathrm{d}V\nonumber \\&=\int _{\Omega } \Big ({\varvec{P}}: \nabla \delta {\varvec{u}}\nonumber \\&\quad +{\varvec{\Sigma }}\dot{:} \nabla ^2 \delta {\varvec{u}}-{\varvec{b}} \cdot \delta {\varvec{u}}\Big )\, \mathrm{d}V. \end{aligned}$$
(66)
Based on the integration by parts, the local form can be derived by
$$\begin{aligned} \delta {\mathcal {F}}&=\int _{\partial \Omega }\Big ( {\varvec{n}}\cdot {\varvec{P}}\cdot \delta {\varvec{u}}+{\varvec{n}}\cdot {\varvec{\Sigma }}{:} \nabla \delta {\varvec{u}} \Big )\, \mathrm{d}S\nonumber \\&\quad -\int _{\Omega }\Big ( \nabla \cdot {\varvec{P}}\cdot \delta {\varvec{u}}+\nabla \cdot {\varvec{\Sigma }}{:} \nabla \delta {\varvec{u}}+{\varvec{b}}\cdot {\varvec{u}} \Big )\, \mathrm{d}V\nonumber \\&=\int _{\partial \Omega }\Big ( {\varvec{n}}\cdot {\varvec{P}}\cdot \delta {\varvec{u}}+{\varvec{n}}\cdot {\varvec{\Sigma }} : \nabla \delta {\varvec{u}}-{\varvec{n}} \cdot \nabla \cdot {\varvec{\Sigma }} \cdot \delta {\varvec{u}}\Big )\, \mathrm{d}S\nonumber \\&\quad -\int _{\Omega } (\nabla \cdot {\varvec{P}}-\nabla ^2 : {\varvec{\Sigma }}+{\varvec{b}})\cdot \delta {\varvec{u}} \, \mathrm{d}. V \end{aligned}$$
(67)
Based on D’Alembert’s principle, the governing equations for dynamic gradient elasticity can be written as
$$\begin{aligned} \nabla \cdot {\varvec{P}}-\nabla ^2 : {\varvec{\Sigma }}+{\varvec{b}}=\rho \ddot{{\varvec{u}}} \text{ in } \Omega . \end{aligned}$$
(68)
On the other hand, do the substitutions \(\nabla \delta {\varvec{u}}\rightarrow \int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij}) {\varvec{g}}_{ij} \otimes \delta {\varvec{u}}_{ij} \, \mathrm{d}V_j, \text{ and } \nabla ^2\delta {\varvec{u}}\rightarrow \int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij}) {\varvec{h}}_{ij} \otimes \delta {\varvec{u}}_{ij} \, \mathrm{d}V_j\), we get
$$\begin{aligned} \delta {\mathcal {F}}&=\int _{\Omega } {\varvec{P}}: \nabla \delta {\varvec{u}}+ {\varvec{\Sigma }}\dot{:} \nabla ^2 \delta {\varvec{u}} -{\varvec{b}}\cdot \delta {\varvec{u}} \, \mathrm{d}V\nonumber \\&=\int _{\Omega }\Big ( {\varvec{P}}_i: \int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij}) {\varvec{g}}_{ij} \otimes \delta {\varvec{u}}_{ij} \, \mathrm{d}V_j\nonumber \\&\quad + {\varvec{\Sigma }}_i\dot{:} \int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij}) {\varvec{h}}_{ij} \otimes \delta {\varvec{u}}_{ij} \, \mathrm{d}V_j-{\varvec{b}}\cdot \delta {\varvec{u}}\Big )\, \mathrm{d}V_i\nonumber \\&=\underbrace{\int _{\Omega } \int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij}) {\varvec{P}}_i {:} (\delta {\varvec{u}}_{j}-\delta {\varvec{u}}_{i}) \otimes {\varvec{g}}_{ij} \, \mathrm{d}V_j \, \mathrm{d}V_i}_{\text {by Eq.}2}\nonumber \\&+\underbrace{\int _{\Omega } \int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij}) {\varvec{\Sigma }}_i\dot{:} (\delta {\varvec{u}}_{j}-\delta {\varvec{u}}_{j}) \otimes {\varvec{h}}_{ij} \, \mathrm{d}V_j \, \mathrm{d}V_i}_{\text {by Eq.}2}-\int _{\Omega }{\varvec{b}}\cdot \delta {\varvec{u}}_i \, \mathrm{d}V_i\nonumber \\&=\int _{\Omega }\Big (\int _{{\mathcal {S}}_i'} \omega (\varvec{r}_{ji}) {\varvec{P}}_j\cdot {\varvec{g}}_{ji}\, \mathrm{d}V_j\nonumber \\&\quad - \int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij}) {\varvec{P}}_i\cdot {\varvec{g}}_{ij} \, \mathrm{d}V_j\Big ) \cdot \delta {\varvec{u}}_i \, \mathrm{d}V_i\nonumber \\&+\int _{\Omega }\Big (\int _{{\mathcal {S}}_i'} \omega (\varvec{r}_{ji}) {\varvec{\Sigma }}_j:{\varvec{h}}_{ji}\, \mathrm{d}V_j\nonumber \\&\quad - \int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij}) {\varvec{\Sigma }}_i:{\varvec{h}}_{ij} \, \mathrm{d}V_j\Big ) \cdot \delta {\varvec{u}}_i \, \mathrm{d}V_i\nonumber \\&\quad -\int _{\Omega }{\varvec{b}}\cdot \delta {\varvec{u}}_i \, \mathrm{d}V_i. \end{aligned}$$
(69)
In the above derivation, we used \({\varvec{\Sigma }}\dot{:}{\varvec{u}} \otimes {\varvec{h}}= ({\varvec{\Sigma }}:{\varvec{h}}) \cdot {\varvec{u}}\). For any \(\delta {\varvec{u}}_i\), \(\delta {\mathcal {F}}=0\) leads to the nonlocal form of gradient elasticity
$$\begin{aligned}&\int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij}) ({\varvec{P}}_i \cdot {\varvec{g}}_{ij} +{\varvec{\Sigma }}_i: {\varvec{h}}_{ij})\, \mathrm{d}V_j\nonumber \\&\quad -\int _{{\mathcal {S}}_i'} \omega (\varvec{r}_{ji}) ({\varvec{P}}_j \cdot {\varvec{g}}_{ji} + {\varvec{\Sigma }}_j:{\varvec{h}}_{ji})\, \mathrm{d}V_j+{\varvec{b}}=\rho \ddot{{\varvec{u}}}_i. \end{aligned}$$
(70)
The inertia force term is added based on D’Alembert’s principle.
Comparing Eqs. 67 and 69, the correspondence from local form to nonlocal form is
$$\begin{aligned}&\nabla ^2: {\varvec{\Sigma }}_i \rightarrow \int _{{\mathcal {S}}_i'} \omega (\varvec{r}_{ji}) {\varvec{\Sigma }}_j: {\varvec{h}}_{ji}\, \mathrm{d}V_j\nonumber \\&\quad - \int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij}) {\varvec{\Sigma }}_i: {\varvec{h}}_{ij} \, \mathrm{d}V_j \end{aligned}$$
(71)
Nonlocal form of magneto-electro-elasticity
In accordance with reference [74], let us postulate the following form of internal energy for the energy function \(\psi :=\psi ({\varvec{F}},\nabla {\varvec{F}}, {\varvec{p}},\nabla {\varvec{p}}, {\varvec{m}},\nabla {\varvec{m}})\), a function depends on the displacement gradient \({\varvec{F}}=\nabla {\varvec{u}}+{\varvec{I}}\) and its second gradient \(\nabla {\varvec{F}}=\nabla ^2 {\varvec{u}}\), polarization vector \({\varvec{p}}\) and its gradient \(\nabla {\varvec{p}}\), magnetic field \({\varvec{m}}\) and its gradient \(\nabla {\varvec{m}}\). The total potential energy in the domain can be written as
$$\begin{aligned}&{\mathcal {F}}=\int _{\Omega } \psi ({\varvec{F}},\nabla {\varvec{F}}, {\varvec{p}},\nabla {\varvec{p}}, {\varvec{m}},\nabla {\varvec{m}}) \, \mathrm{d}V \end{aligned}$$
(72)
This model has a strong physical background, for example, the nonlinear electro-gradient elasticity for semiconductors [75] and flexoelectricity [76].
The first variation of \({\mathcal {F}}\) is
$$\begin{aligned} \delta {\mathcal {F}}=&\int _{\Omega } \delta \psi \, \mathrm{d}V\nonumber \\ =&\int _{\Omega } \frac{\partial \psi }{\partial {\varvec{F}}}:\nabla \delta {\varvec{u}}+\frac{\partial \psi }{\partial \nabla {\varvec{F}}}\dot{:}\nabla ^2 \delta {\varvec{u}}+\frac{\partial \psi }{\partial {\varvec{p}}}\cdot \delta {\varvec{p}}+\nonumber \\&\frac{\partial \psi }{\partial \nabla {\varvec{p}}}:\nabla \delta {\varvec{p}}+\frac{\partial \psi }{\partial {\varvec{m}}}\cdot \delta {\varvec{m}}+\frac{\partial \psi }{\partial \nabla {\varvec{m}}}:\nabla \delta {\varvec{m}} \, \mathrm{d}V\nonumber \\ =&\int _{\Omega } {\varvec{P}}:\nabla \delta {\varvec{u}}+{\varvec{\Sigma }}\dot{:}\nabla ^2 \delta {\varvec{u}}+{\varvec{e}}\cdot \delta {\varvec{p}}\nonumber \\&+{\varvec{E}}:\nabla \delta {\varvec{p}}+{\varvec{s}}\cdot \delta {\varvec{m}}+{\varvec{S}}:\nabla \delta {\varvec{m}} \, \mathrm{d}V \end{aligned}$$
(73)
where
$$\begin{aligned} {\varvec{P}}&=\frac{\partial \psi }{\partial {\varvec{F}}}, {\varvec{\Sigma }}=\frac{\partial \psi }{\partial \nabla {\varvec{F}}}, {\varvec{e}}=\frac{\partial \psi }{\partial {\varvec{p}}} \end{aligned}$$
(74)
$$\begin{aligned} {\varvec{E}}&=\frac{\partial \psi }{\partial \nabla {\varvec{p}}}, {\varvec{s}}=\frac{\partial \psi }{\partial {\varvec{m}}}, {\varvec{S}}=\frac{\partial \psi }{\partial \nabla {\varvec{m}}} \end{aligned}$$
(75)
Doing substitutions \(\nabla \delta {\varvec{u}}_i\rightarrow \int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij})\delta {\varvec{u}}_{ij}\otimes {\varvec{g}}_{ij} \, \mathrm{d}V_j\), \(\nabla ^2 \delta {\varvec{u}}_i\rightarrow \int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij})\delta {\varvec{u}}_{ij}\otimes {\varvec{h}}_{ij} \, \mathrm{d}V_j\), \(\nabla \delta {\varvec{p}}_i\rightarrow \int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij})\delta {\varvec{p}}_{ij}\otimes {\varvec{g}}_{ij} \, \mathrm{d}V_j\),\(\nabla \delta {\varvec{m}}_i\rightarrow \int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij})\delta {\varvec{m}}_{ij}\otimes {\varvec{g}}_{ij} \, \mathrm{d}V_j\) and following the same operations in prior sections, the functional becomes
$$\begin{aligned} \delta {\mathcal {F}}&=\int _{\Omega } \Big (\int _{{\mathcal {S}}_i'} \omega (\varvec{r}_{ji})({\varvec{P}}_j\cdot {\varvec{g}}_{ji}+{\varvec{\Sigma }}_j :{\varvec{h}}_{ji}) \, \mathrm{d}V_j\nonumber \\&\quad -\int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij})({\varvec{P}}_i\cdot {\varvec{g}}_{ij}+{\varvec{\Sigma }}_i :{\varvec{h}}_{ij}) \, \mathrm{d}V_j\Big )\cdot \delta {\varvec{u}}_i \, \mathrm{d}V_i\nonumber \\&+\int _{\Omega } \Big (\int _{{\mathcal {S}}_i'} \omega (\varvec{r}_{ji})({\varvec{E}}_j\cdot {\varvec{g}}_{ji}) \, \mathrm{d}V_j\nonumber \\&\quad -\int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij}){\varvec{E}}_i\cdot {\varvec{g}}_{ij} \, \mathrm{d}V_j+{\varvec{e}}_i\Big )\cdot \delta {\varvec{p}}_i \, \mathrm{d}V_i+\nonumber \\&\int _{\Omega } \Big (\int _{{\mathcal {S}}_i'} \omega (\varvec{r}_{ji})({\varvec{S}}_j\cdot {\varvec{g}}_{ji}) \, \mathrm{d}V_j\nonumber \\&\quad -\int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij}){\varvec{S}}_i\cdot {\varvec{g}}_{ij} \, \mathrm{d}V_j+{\varvec{s}}_i\Big )\cdot \delta {\varvec{m}}_i \, \mathrm{d}V_i \end{aligned}$$
(76)
For any \(\delta {\varvec{u}}_i,\delta {\varvec{p}}_i,\delta {\varvec{m}}_i\), \(\delta {\mathcal {F}}=0\) leads to general nonlocal governing equation for mechanical field, electrical field and magnetic field, respectively
$$\begin{aligned}&\int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij})({\varvec{P}}_i\cdot {\varvec{g}}_{ij}+{\varvec{\Sigma }}_i :{\varvec{h}}_{ij}) \, \mathrm{d}V_j\nonumber \\&\quad -\int _{{\mathcal {S}}_i'} \omega (\varvec{r}_{ji})({\varvec{P}}_j\cdot {\varvec{g}}_{ji}+{\varvec{\Sigma }}_j :{\varvec{h}}_{ji}) \, \mathrm{d}V_j+{\varvec{b}}_i=0 \end{aligned}$$
(77)
$$\begin{aligned}&\int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij}){\varvec{E}}_i\cdot {\varvec{g}}_{ij} \, \mathrm{d}V_j\nonumber \\&\quad -\int _{{\mathcal {S}}_i'} \omega (\varvec{r}_{ji}){\varvec{E}}_j\cdot {\varvec{g}}_{ji} \, \mathrm{d}V_j-{\varvec{e}}_i=0 \end{aligned}$$
(78)
$$\begin{aligned}&\int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij}){\varvec{S}}_i\cdot {\varvec{g}}_{ij} \, \mathrm{d}V_j\nonumber \\&\quad -\int _{{\mathcal {S}}_i'} \omega (\varvec{r}_{ji}){\varvec{S}}_j\cdot {\varvec{g}}_{ji} \, \mathrm{d}V_j-{\varvec{s}}_i=0 \end{aligned}$$
(79)
In the derivation, we did not specify the exact form of the energy density, whether it is of small deformation or of finite deformation. For the specified energy form, one only needs to derive the expression for \({\varvec{P}}, {\varvec{\Sigma }}, {\varvec{e}},{\varvec{E}},{\varvec{s}},{\varvec{S}}\) based on the material constitutions. It can be seen that the nonlocal governing equations for the continuum magneto-electro-elasticity can be obtained with ease by using nonlocal operator method and variational principle. The same rule applies for many other physical problems.
Nonlocal form of phase-field fracture method
Phase-field fracture method is powerful in fracture modelling [77]. The difference in tensile and compressive strengths of the material can be considered by dividing the strain energy density into a tensile part affected by the phase field and a compressive part, which is independent of the phase field,
$$\begin{aligned} \psi _e(\varvec{\varepsilon }(\nabla {\varvec{u}}),s)=(1-s)^2\psi _e^{+} (\varvec{\varepsilon }(\nabla {\varvec{u}}))+\psi _e^{-} (\varvec{\varepsilon }(\nabla {\varvec{u}})). \end{aligned}$$
(80)
where \(\psi _e^+ \) (\(\psi _e^- \)) denotes the strain energy density for tensile (compressive) part, \({\varvec{u}} \) is the displacement, \(s\in [0,1]\) is the phase field, \(\varvec{\varepsilon }\) denotes the strain and \(\ell \) is the phase-field intrinsic length scale.
The full potential functional of the phase-field fracture model reads
$$\begin{aligned} {\mathcal {F}}_\ell ({\varvec{u}},s)&=\int _\Omega \Big ((1-s)^2\psi _e^{+} (\varvec{\varepsilon }(\nabla {\varvec{u}}))+\psi _e^{-} (\varvec{\varepsilon }(\nabla {\varvec{u}}))\Big )\, \mathrm{d}V\nonumber \\&\quad -\int _{\partial \Omega } {\varvec{t}}^*\cdot {\varvec{u}}\, \mathrm{d}A-\int _\Omega {\varvec{b}}\cdot {\varvec{u}}\, \mathrm{d}V+\int _\Omega g_c(\frac{s^2}{2 \ell } +\frac{\ell }{2} \nabla s\cdot \nabla s)\, \mathrm{d}V, \end{aligned}$$
(81)
where \({\varvec{t}} ^ * \) denotes the surface traction at the boundary, \({\varvec{b}} \) is the body force density and \(g_c\) is the critical energy release rate.
For the sake of simplicity, we neglect the surface traction force and consider the first variation of \({\mathcal {F}}_\ell \)
$$\begin{aligned} \delta {\mathcal {F}}_\ell&=\int _\Omega \delta \Big ((1-s)^2\psi _e^{+}+\psi _e^{-}\Big )\, \mathrm{d}V-\int _\Omega {\varvec{b}}\cdot \delta {\varvec{u}}\, \mathrm{d}V\nonumber \\&\quad +\int _\Omega g_c \delta (\frac{s^2}{2\ell } +\frac{\ell }{2} \nabla s\cdot \nabla s)\, \mathrm{d}V\nonumber \\&=\int _\Omega \Big ((1-s)^2\frac{\partial \psi _e^{+}}{\partial {\varvec{\varepsilon }}}:\nabla \delta {\varvec{u}}\nonumber \\&\quad -2\psi _e^{+}(1-s)\delta s +\frac{\partial \psi _e^{-}}{\partial {\varvec{\varepsilon }}}:\nabla \delta {\varvec{u}}\Big )\, \mathrm{d}V-\int _\Omega {\varvec{b}}\cdot \delta {\varvec{u}}\, \mathrm{d}V\nonumber \\&+\int _\Omega g_c (\frac{s}{\ell } \delta s+\ell \nabla s\cdot \nabla \delta s)\, \mathrm{d}V\nonumber \\&=\int _\Omega \Big (((1-s)^2{\varvec{\sigma }}^++{\varvec{\sigma }}^-):\nabla \delta {\varvec{u}}-{\varvec{b}}\cdot \delta {\varvec{u}}\Big )\, \mathrm{d}V\nonumber \\&\quad +\int _\Omega g_c (\frac{s}{\ell } \delta s-2\frac{\psi _e^{+}}{g_c}(1-s)\delta s +\ell \nabla s\cdot \nabla \delta s)\, \mathrm{d}V\nonumber \\&=\int _\Omega \Big ({\varvec{\sigma }}_i:\nabla \delta {\varvec{u}}_i-{\varvec{b}}_i\cdot \delta {\varvec{u}}_i\Big )\, \mathrm{d}V_i\nonumber \\&\quad +\int _\Omega g_c (\frac{s_i}{\ell } \delta s_i-2\frac{\psi _{ei}^{+}}{g_c}(1-s_i)\delta s_i +\ell \nabla s_i\cdot \nabla \delta s_i)\, \mathrm{d}V_i\nonumber \\&=\int _\Omega \Big ({\varvec{\sigma }}_i:(\int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij})\delta {\varvec{u}}_{ij}\otimes {\varvec{g}}_{ij} \, \mathrm{d}V_j)\nonumber \\&\quad -{\varvec{b}}_i\cdot \delta {\varvec{u}}_i\Big )\, \mathrm{d}V_i\nonumber \\ {}&+\int _\Omega g_c (\frac{s_i}{\ell } \delta s_i-2\frac{\psi _{ei}^{+}}{g_c}(1-s_i)\delta s_i +\ell \nabla s_i\cdot \nonumber \\&\quad \int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij})\delta s_{ij} {\varvec{g}}_{ij} \, \mathrm{d}V_j)\, \mathrm{d}V_i\nonumber \\&=\int _\Omega \Big ((\int _{{\mathcal {S}}_i'} \omega (\varvec{r}_{ji}){\varvec{\sigma }}_j\cdot {\varvec{g}}_{ji}\, \mathrm{d}V_j\nonumber \\&\quad -\int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij}){\varvec{\sigma }}_i\cdot {\varvec{g}}_{ij}\, \mathrm{d}V_j)\cdot \delta {\varvec{u}}_i-{\varvec{b}}_i\cdot \delta {\varvec{u}}_i\Big )\, \mathrm{d}V_i\nonumber \\&+\int _\Omega g_c \Bigg (\frac{s_i}{\ell } -2\frac{\psi _{ei}^{+}}{g_c}(1-s_i) +\int _{{\mathcal {S}}_i'} \omega (\varvec{r}_{ji})\ell \nabla s_j\cdot {\varvec{g}}_{ji} \, \mathrm{d}V_j\nonumber \\&\quad -\int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij})\ell \nabla s_i\cdot {\varvec{g}}_{ij} \, \mathrm{d}V_j\Bigg )\delta s_i\, \mathrm{d}V_i \end{aligned}$$
(82)
where
$$\begin{aligned} {\varvec{\sigma }}^{+}&=\frac{\partial \psi _e^{+}}{\partial {\varvec{\varepsilon }}}, {\varvec{\sigma }}^-=\frac{\partial \psi _e^{-}}{\partial {\varvec{\varepsilon }}} \end{aligned}$$
(83)
$$\begin{aligned} {\varvec{\sigma }}&=(1-s)^2{\varvec{\sigma }}^++{\varvec{\sigma }}^- \end{aligned}$$
(84)
For any \(\delta {\varvec{u}}_i,\delta s_i\), \(\delta {\mathcal {F}}_\ell =0\) leads to the nonlocal governing equations for the mechanical field and phase field
$$\begin{aligned}&\int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij}){\varvec{\sigma }}_i\cdot {\varvec{g}}_{ij}\, \mathrm{d}V_j\nonumber \\&\quad -\int _{{\mathcal {S}}_i'} \omega (\varvec{r}_{ji}){\varvec{\sigma }}_j\cdot {\varvec{g}}_{ji}\, \mathrm{d}V_j+{\varvec{b}}_i=0 \end{aligned}$$
(85)
$$\begin{aligned}&\frac{s_i}{\ell } -2\frac{\psi _{ei}^{+}}{g_c}(1-s_i) +\int _{{\mathcal {S}}_i'} \omega (\varvec{r}_{ji})\ell \nabla s_j\cdot {\varvec{g}}_{ji} \, \mathrm{d}V_j\nonumber \\&\quad -\int _{{\mathcal {S}}_i} \omega (\varvec{r}_{ij})\ell \nabla s_i\cdot {\varvec{g}}_{ij} \, \mathrm{d}V_j=0. \end{aligned}$$
(86)
The above examples aim at illustrating the power of nonlocal operator method combined with weighted residual method or variational principle in the derivation of nonlocal strong forms based on their local strong or energy forms. The derived nonlocal strong forms are variationally consistent and allow variable support sizes for each point in the model.