Skip to main content
Log in

New discontinuous Galerkin algorithms and analysis for linear elasticity with symmetric stress tensor

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This paper presents a new and unified approach to the derivation and analysis of many existing, as well as new discontinuous Galerkin methods for linear elasticity problems. The analysis is based on a unified discrete formulation for the linear elasticity problem consisting of four discretization variables: strong symmetric stress tensor \(\varvec{\sigma }_h\) and displacement \(u_h\) inside each element, and the modifications of these two variables \(\check{\varvec{\sigma }}_h\) and \({\check{u}}_h\) on elementary boundaries of elements. Motivated by many relevant methods in the literature, this formulation can be used to derive most existing discontinuous, nonconforming and conforming Galerkin methods for linear elasticity problems and especially to develop a number of new discontinuous Galerkin methods. Many special cases of this four-field formulation are proved to be hybridizable and can be reduced to some known hybridizable discontinuous Galerkin, weak Galerkin and local discontinuous Galerkin methods by eliminating one or two of the four fields. As certain stabilization parameter tends to zero, this four-field formulation is proved to converge to some conforming and nonconforming mixed methods for linear elasticity problems. Two families of inf-sup conditions, one known as \(H^1\)-based and the other known as \(H(\mathrm{div})\)-based, are proved to be uniformly valid with respect to different choices of discrete spaces and parameters. These inf-sup conditions guarantee the well-posedness of the new proposed methods and also offer a new and unified analysis for many existing methods in the literature as a by-product. Some numerical examples are provided to verify the theoretical analysis including the optimal convergence of the new proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Amara, M., Thomas, J.M.: Equilibrium finite elements for the linear elastic problem. Numer. Math. 33(4), 367–383 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, D.N., Falk, R.S.: A new mixed formulation for elasticity. Numer. Math. 53(1–2), 13–30 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold, D.N., Winther, R.: Mixed finite elements for elasticity. Numer. Math. 92(3), 401–419 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arnold, D.N., Winther, R.: Nonconforming mixed elements for elasticity. Math. Models Methods Appl. Sci. 13(03), 295–307 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arnold, D.N., Brezzi, F., Douglas, J.: Peers: a new mixed finite element for plane elasticity. Jpn. J. Appl. Math. 1(2), 347 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Arnold, D., Falk, R., Winther, R.: Mixed finite element methods for linear elasticity with weakly imposed symmetry. Math. Comput. 76(260), 1699–1723 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Arnold, D., Awanou, G., Winther, R.: Finite elements for symmetric tensors in three dimensions. Math. Comput. 77(263), 1229–1251 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Arnold, D.N., Awanou, G., Winther, R.: Nonconforming tetrahedral mixed finite elements for elasticity. Math. Models Methods Appl. Sci. 24(04), 783–796 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Artioli, E., De Miranda, S., Lovadina, C., Patruno, L.: A stress/displacement virtual element method for plane elasticity problems. Comput. Methods Appl. Mech. Eng. 325, 155–174 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Artioli, E., de Miranda, S., Lovadina, C., Patruno, L.: A family of virtual element methods for plane elasticity problems based on the Hellinger–Reissner principle. Comput. Methods Appl. Mech. Eng. 340, 978–999 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Awanou, G.: A rotated nonconforming rectangular mixed element for elasticity. Calcolo 46(1), 49–60 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Boffi, D., Brezzi, F., Fortin, M.: Reduced symmetry elements in linear elasticity. Commun. Pure Appl. Anal. 8(1), 95–121 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications, vol. 44. Springer, Berlin (2013)

    MATH  Google Scholar 

  15. Brezzi, F., Marini, L.D.: Finite elements and virtual elements on classical meshes. Vietnam J. Mathe., pp. 1–29 (2021)

  16. Brezzi, F., Marini, L.D.: The three-field formulation for elasticity problems. GAMM-Mitteilungen 28(2), 124–153 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, Y., Huang, J., Huang, X., Xu, Y.: On the local discontinuous Galerkin method for linear elasticity. Mathematical Problems in Engineering (2010)

  18. Chen, G., Xie, X.: A robust weak Galerkin finite element method for linear elasticity with strong symmetric stresses. Comput. Methods Appl. Math. 16(3), 389–408 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen, L., Hu, J., Huang, X.: Stabilized mixed finite element methods for linear elasticity on simplicial grids in \({R^n}\). Comput. Methods Appl. Math. 17(1), 17–31 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cockburn, B., Karniadakis, G.E., Shu, C.W.: The development of discontinuous Galerkin methods. In: Discontinuous Galerkin Methods, pp. 3–50. Springer (2000)

  21. Courant, R.: Variational methods for the solution of problems of equilibrium and vibrations. Lecture Notes in Pure and Applied Mathematics (1994)

  22. Da Veiga, L.B., Brezzi, F., Marini, L.D.: Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51(2), 794–812 (2013)

  23. Dassi, F., Lovadina, C., Visinoni, M.: A three-dimensional Hellinger–Reissner virtual element method for linear elasticity problems. Comput. Methods Appl. Mech. Eng. 364, 112910 (2020)

  24. Eastwood, M.: A complex from linear elasticity. In: Proceedings of the 19th Winter School " Geometry and Physics", pp. 23–29. Circolo Matematico di Palermo (2000)

  25. Feng, K.: Finite difference schemes based on variational principles. Appl. Math. Comput. Math. 2, 238–262 (1965)

    Google Scholar 

  26. Fraeijs de Veubeke, B.: Stress function approach. In: Proceedings of the World Congress on Finite Element Methods in Structural Mechanics, vol. 1, pp. J.1–J.51. Bournemouth, Dorset, England (1975)

  27. Fu, G., Cockburn, B., Stolarski, H.: Analysis of an HDG method for linear elasticity. Int. J. Numer. Meth. Eng. 102(3–4), 551–575 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gatica, G.N., Sequeira, F.A.: Analysis of an augmented hdg method for a class of quasi-newtonian stokes flows. J. Sci. Comput. 65(3), 1270–1308 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gong, S., Wu, S., Xu, J.: New hybridized mixed methods for linear elasticity and optimal multilevel solvers. Numer. Math. 141(2), 569–604 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gopalakrishnan, J., Guzmán, J.: Symmetric nonconforming mixed finite elements for linear elasticity. SIAM J. Numer. Anal. 49(4), 1504–1520 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hansbo, P., Larson, M.G.: Discontinuous Galerkin and the Crouzeix–Raviart element: application to elasticity. ESAIM: Math. Model. Numer. Anal. 37(1), 63–72 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hong, Q., Kraus, J., Lymbery, M., Philo, F.: Conservative discretizations and parameter-robust preconditioners for Biot and multiple-network flux-based poroelasticity models. Numer. Linear Algebra with Appl. 26(4), e2242 (2019)

  33. Hong, Q., Kraus, J.: Parameter-robust stability of classical three-field formulation of Biot’s consolidation model. Electron. Trans. Numer. Anal. 48, 202–226 (2018)

  34. Hong, Q., Li, Y., Xu, J.: An extended Galerkin analysis in finite element exterior calculus. arXiv preprint arXiv:2101.09735 (2021)

  35. Hong, Q., Wu, S., Xu, J.: An extended Galerkin analysis for elliptic problems. Sci. China Math., pp. 1–18 (2020)

  36. Hong, Q., Kraus, J.: Uniformly stable discontinuous Galerkin discretization and robust iterative solution methods for the Brinkman problem. SIAM J. Numer. Anal. 54(5), 2750–2774 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hong, Q., Xu, J.: Uniform stability and error analysis for some discontinuous Galerkin methods. J. Comput. Math. 39(2), 283–310 (2020)

    MathSciNet  MATH  Google Scholar 

  38. Hong, Q., Hu, J., Shu, S., Xu, J.: A discontinuous Galerkin method for the fourth-order curl problem. J. Comput. Math. 30(6), 565–578 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Hong, Q., Kraus, J., Xu, J., Zikatanov, L.: A robust multigrid method for discontinuous Galerkin discretizations of stokes and linear elasticity equations. Numer. Math. 132(1), 23–49 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Hong, Q., Wang, F., Wu, S., Xu, J.: A unified study of continuous and discontinuous Galerkin methods. Sci. China Math. 62(1), 1–32 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  41. Hrennikoff, A.: Solution of problems of elasticity by the framework method. J. Appl. Mech. 8(4), A169–A175 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  42. Hu, J., Zhang, S.: A family of conforming mixed finite elements for linear elasticity on triangular grids. arXiv preprint arXiv:1406.7457 (2014)

  43. Hu, J.: Finite element approximations of symmetric tensors on simplicial grids in \(\mathbb{R}^n\): the higher order case. J. Comput. Math. 33(3), 283–296 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Hu, J., Ma, R.: Nonconforming mixed finite elements for linear elasticity on simplicial grids. Numer. Methods Partial Differ. Equ. 35(2), 716–732 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  45. Hu, J., Shi, Z.C.: Lower order rectangular nonconforming mixed finite elements for plane elasticity. SIAM J. Numer. Anal. 46(1), 88–102 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  46. Hu, J., Zhang, S.: A family of symmetric mixed finite elements for linear elasticity on tetrahedral grids. Sci. China Math. 58(2), 297–307 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. Hu, J., Zhang, S.: Finite element approximations of symmetric tensors on simplicial grids in \(\mathbb{R}^n\): the lower order case. Math. Models Methods Appl. Sci. 26(9), 1649–1669 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  48. Man, H., Hu, J., Shi, Z.C.: Lower order rectangular nonconforming mixed finite element for the three-dimensional elasticity problem. Math. Models Methods Appl. Sci. 19(01), 51–65 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  49. Pechstein, A., Schöberl, J.: Tangential-displacement and normal-normal-stress continuous mixed finite elements for elasticity. Math. Models Methods Appl. Sci. 21(08), 1761–1782 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  50. Pechstein, A.S., Schöberl, J.: An analysis of the TDNNS method using natural norms. Numer. Math. 139(1), 93–120 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  51. Qiu, W., Shen, J., Shi, K.: An HDG method for linear elasticity with strong symmetric stresses. Math. Comput. 87(309), 69–93 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  52. Soon, S.: Hybridizable Discontinuous Galerkin Method for Solid Mechanics. Ph.D. thesis, University of Minnesota (2008)

  53. Soon, S., Cockburn, B., Stolarski, H.: A hybridizable discontinuous Galerkin method for linear elasticity. Int. J. Numer. Meth. Eng. 80(8), 1058–1092 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  54. Stein, E., Rolfes, R.: Mechanical conditions for stability and optimal convergence of mixed finite elements for linear plane elasticity. Comput. Methods Appl. Mech. Eng. 84(1), 77–95 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  55. Stenberg, R.: Two Low-order Mixed Methods for the Elasticity Problem. The Mathematics of Finite Elements and Applications, VI (Uxbridge, 1987), pp. 271–280 (1988)

  56. Stenberg, R.: On the construction of optimal mixed finite element methods for the linear elasticity problem. Numer. Math. 48(4), 447–462 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  57. Stenberg, R.: A family of mixed finite elements for the elasticity problem. Numer. Math. 53(5), 513–538 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  58. Wang, R., Zhang, R.: A weak Galerkin finite element method for the linear elasticity problem in mixed form. J. Comput. Math. 36(4), 469–491 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  59. Wang, C., Wang, J., Wang, R., Zhang, R.: A locking-free weak Galerkin finite element method for elasticity problems in the primal formulation. J. Comput. Appl. Math. 307, 346–366 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  60. Wang, R., Wang, X., Zhang, K., Zhou, Q.: Hybridized weak Galerkin finite element method for linear elasticity problem in mixed form. Front. Math. China 13(5), 1121–1140 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  61. Wang, F., Wu, S., Xu, J.: A mixed discontinuous Galerkin method for linear elasticity with strongly imposed symmetry. J. Sci. Comput. 83(1), 1–17 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  62. Wu, S., Gong, S., Xu, J.: Interior penalty mixed finite element methods of any order in any dimension for linear elasticity with strongly symmetric stress tensor. Math. Models Methods Appl. Sci. 27(14), 2711–2743 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  63. Yi, S.Y.: Nonconforming mixed finite element methods for linear elasticity using rectangular elements in two and three dimensions. Calcolo 42(2), 115–133 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  64. Yi, S.Y.: A new nonconforming mixed finite element method for linear elasticity. Math. Models Methods Appl. Sci. 16(07), 979–999 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  65. Yi, S.Y.: A lowest-order weak Galerkin method for linear elasticity. J. Comput. Appl. Math. 350, 286–298 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limin Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of Hong, Ma and Xu was partially supported by Center for Computational Mathematics and Applications, The Pennsylvania State University. The work of Hu was supported by NSFC projects 11625101.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Q., Hu, J., Ma, L. et al. New discontinuous Galerkin algorithms and analysis for linear elasticity with symmetric stress tensor. Numer. Math. 149, 645–678 (2021). https://doi.org/10.1007/s00211-021-01234-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-021-01234-3

Mathematics Subject Classification

Navigation