Skip to main content
Log in

Approximation by Hölder Functions in Besov and Triebel–Lizorkin Spaces

  • Published:
Constructive Approximation Aims and scope

Abstract

In this paper, we show that Besov and Triebel–Lizorkin functions can be approximated by a Hölder continuous function both in the Lusin sense and in norm. The results are proved in metric measure spaces for Hajłasz–Besov and Hajłasz–Triebel–Lizorkin functions defined by a pointwise inequality. We also prove new inequalities for medians, including a Poincaré type inequality, which we use in the proof of the main result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, D.R.: Besov capacity redux, problems in mathematical analysis. No. 42. J. Math. Sci. (N.Y.) 162(3), 307–318 (2009)

    Article  MathSciNet  Google Scholar 

  2. Ambrosio, L.: Fine properties of sets of finite perimeter in doubling metric measure spaces, calculus of variations, nonsmooth analysis and related topics. Set-Valued Anal. 10(2–3), 111–128 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aoki, T.: Locally bounded linear topological spaces. Proc. Imp. Acad. Tokyo 18, 588–594 (1942)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bojarski, B., Hajłasz, P., Strzelecki, P.: Improved \(C^{k,\lambda }\) approximation of higher order Sobolev functions in norm and capacity. Indiana Univ. Math. J. 51(3), 507–540 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Coifman, R.R., Weiss, G.: Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Mathematics, vol. 242. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  6. Fefferman, C., Stein, E.M.: Some maximal inequalities. Am. J. Math. 93, 107–115 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fujii, N.: A condition for a two-weight norm inequality for singular integral operators. Studia Math. 98(3), 175–190 (1991)

    MATH  MathSciNet  Google Scholar 

  8. Gogatishvili, A., Koskela, P., Shanmugalingam, N.: Interpolation properties of Besov spaces defined on metric spaces. Math. Nachr. 283(2), 215–231 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gogatishvili, A., Koskela, P., Zhou, Y.: Characterizations of Besov and Triebel–Lizorkin spaces on metric measure spaces. Forum Math. 25(4), 787–819 (2013)

    MATH  MathSciNet  Google Scholar 

  10. Grafakos, L., Liu, L., Yang, D.: Vector-valued singular integrals and maximal functions on spaces of homogeneous type. Math. Scand. 104, 296–310 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hajłasz, P.: Sobolev spaces on an arbitrary metric space. Potential Anal. 5, 403–415 (1996)

    MATH  MathSciNet  Google Scholar 

  12. Hajłasz, P., Kinnunen, J.: Hölder quasicontinuity of Sobolev functions on metric spaces. Rev. Mat. Iberoam. 14(3), 601–622 (1998)

    Article  MATH  Google Scholar 

  13. Han, Y., Müller, D., Yang, D.: A theory of Besov and Triebel–Lizorkin spaces on metric measure spaces modeled on Carnot–Carathéodory spaces. Abstr. Appl. Anal. Art. ID 893409, 250 pp. (2008)

  14. Hedberg, L.I., Netrusov, Y.: An axiomatic approach to function spaces, spectral synthesis, and Luzin approximation. Mem. Am. Math. Soc. 188(882) (2007)

  15. Heikkinen, T., Ihnatsyeva, L., Tuominen, H.: Measure density and extension of Besov and Triebel–Lizorkin functions. J. Fourier Anal. Appl. (to appear). doi:10.1007/s00041-015-9419-9

  16. Heikkinen, T., Koskela, P., Tuominen, H.: Approximation and quasicontinuity of Besov and Triebel–Lizorkin functions. Trans. Am. Math. Soc. (to appear). http://arxiv.org/abs/1505.05680

  17. Heikkinen, T., Tuominen, H.: Smoothing properties of the discrete fractional maximal operator on Besov and Triebel–Lizorkin spaces. Publ. Mat. 58(2), 379–399 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  18. Jawerth, B., Perez, C., Welland, G.: The positive cone in Triebel–Lizorkin spaces and the relation among potential and maximal operators. In: Harmonic Analysis and Partial Differential Equations. Boca Raton, FL, 1988, pp. 71–91. Contemp. Math. vol. 107, Am. Math. Soc. Providence, RI, 1990

  19. Jawerth, B., Torchinsky, A.: Local sharp maximal functions. J. Approx. Theory 43(3), 231–270 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kinnunen, J., Tuominen, H.: Pointwise behaviour of \(M^{1,1}\) Sobolev functions. Math. Z. 257(3), 613–630 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Koskela, P., Saksman, E.: Pointwise characterizations of Hardy–Sobolev functions. Math. Res. Lett. 15(4), 727–744 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Koskela, P., Yang, D., Zhou, Y.: Pointwise characterizations of Besov and Triebel–Lizorkin spaces and quasiconformal mappings. Adv. Math. 226(4), 3579–3621 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  23. Krotov, V.G., Prokhorovich, M.A.: The Luzin approximation of functions from the classes \(W^p_\alpha \) on metric spaces with measure. (Russ.) Izv. Vyssh. Uchebn. Zaved. Mat. (5) 55–66 (translation in Russian Math. (Iz. VUZ) 52(5), 47–57 (2008))

  24. Lerner, A.K.: A pointwise estimate for the local sharp maximal function with applications to singular integrals. Bull. Lond. Math. Soc. 42, 843–856 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lerner, A.K., Pérez, C.: Self-improving properties of generalized Poincaré type inequalities throught rearrangements. Math. Scand. 97(2), 217–234 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Liu, F.C.: A Luzin type property of Sobolev functions. Indiana Univ. Math. J. 26(4), 645–651 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  27. Macías, R.A., Segovia, C.: A decomposition into atoms of distributions on spaces of homogeneous type. Adv. Math. 33(3), 271–309 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  28. Malý, J.: Hölder type quasicontinuity. Potential Anal. 2(3), 249–254 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  29. Michael, J.H., Ziemer, W.P.: Lusin type approximation of Sobolev functions by smooth functions. Contemp. Math. 42, 135–167 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  30. Müller, D., Yang, D.: A difference characterization of Besov and Triebel–Lizorkin spaces on RD-spaces. Forum Math. 21(2), 259–298 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  31. Netrusov, Y.V.: Metric estimates for the capacities of sets in Besov spaces. (Russ.) Trudy Mat. Inst. Steklov. 190 (1989), 159–185 (translation in Proc. Steklov Inst. Math. 1992 (1), 167–192)

  32. Netrusov, Y.V.: Estimates of capacities associated with Besov spaces. (Russ.) Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 201, 124–156 (1992) (translation in J. Math. Sci. 78(2), 199–217 (1996))

  33. Poelhuis, J., Torchinsky, A.: Medians, continuity, and vanishing oscillation. Studia Math. 213(3), 227–242 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  34. Rolewicz, S.: On a certain class of linear metric spaces. Bull. Acad. Polon. Sci. Cl. III(5), 471–473 (1957)

    MATH  MathSciNet  Google Scholar 

  35. Sawano, Y.: Sharp estimates of the modified Hardy–Littlewood maximal operator on the nonhomogeneous space via covering lemmas. Hokkaido Math. J. 34(2), 435–458 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  36. Shanmugalingam, N., Yang, D., Yuan, W.: Newton–Besov spaces and Newton–Triebel–Lizorkin spaces on metric measure spaces. Positivity 19(2), 177–220 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  37. Stocke, B.M.: A Lusin type approximation of Bessel potentials and Besov functions by smooth functions. Math. Scand. 77(1), 60–70 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  38. Strömberg, J.-O.: Bounded mean oscillation with Orlicz norms and duality of Hardy spaces. Indiana Univ. Math. J 28(3), 511–544 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  39. Strömberg, J.-O., Torchinsky, A.: Weighted hardy spaces, Lecture Notes in Mathematics, vol. 1381. Springer-Verlag, Berlin, (1989)

  40. Swanson, D.: Pointwise inequalities and approximation in fractional Sobolev spaces. Studia Math. 149(2), 147–174 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  41. Swanson, D.: Approximation by Hölder continuous functions in a Sobolev space. Rocky Mt. J. Math. 44(3), 1027–1035 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  42. Triebel, H.: Theory of Function Spaces. Birkhäuser, Basel (1983)

    Book  MATH  Google Scholar 

  43. Triebel, H.: Theory of Function Spaces. II, Monographs in Mathematics, 84. Birkhäuser, Basel (1992)

    Book  Google Scholar 

  44. Yang, D.: New characterizations of Hajłasz–Sobolev spaces on metric spaces. Sci. China Ser. A 46, 675–689 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  45. Yang, D., Zhou, Y.: New properties of Besov and Triebel–Lizorkin spaces on RD-spaces. Manuscr. Math. 134(1–2), 59–90 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  46. Zhou, Y.: Fractional Sobolev extension and imbedding. Trans. Am. Math. Soc. 367(2), 959–979 (2015)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The research was supported by the Academy of Finland, grants no. 135561 and 272886. Part of this research was conducted during the visit of the second author to Forschungsinstitut für Mathematik of ETH Zürich, and she wishes to thank the institute for the kind hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heli Tuominen.

Additional information

Communicated by Pencho Petrushev.

Appendix

Appendix

The fact that Hajłasz–Besov and Hajłasz–Triebel–Lizorkin spaces are complete (Banach spaces when \(p,q\ge 1\) and quasi-Banach spaces otherwise) has not been proved in earlier papers.

Theorem 5.1

The spaces \(N^s_{p,q}(X)\) and \(M^s_{p,q}(X)\) are complete for all \(0<s<\infty \), \(0<p,q\le \infty \).

Proof

We prove the Besov case; the proof for Triebel–Lizorkin spaces is similar. Let \((u_i)_i\) be a Cauchy sequence in \(N^s_{p,q}(X)\). Since \(L^p(X)\) is complete, there exists a function \(u\in L^p(X)\) such that \(u_i\rightarrow u\) in \(L^p(X)\) as \(i\rightarrow \infty \). We will show that \((u_i)_i\) converges to u in \(N^s_{p,q}(X)\).

We may assume (by taking a subsequence) that

$$\begin{aligned} \Vert u_{i+1}-u_i\Vert _{N^s_{p,q}(X)}\le 2^{-i} \end{aligned}$$

for all \(i\in \mathbb {N}\) and that \(u_i(x)\rightarrow u(x)\) as \(i\rightarrow \infty \) for almost all \(x\in X\). Hence, for each \(i\in \mathbb {N}\), there exists \((g_{i,k})_k\in l^q(L^p(X))\) and a set \(E_i\) of zero measure such that

$$\begin{aligned} |(u_{i+1}-u_i)(x)-(u_{i+1}-u_i)(y)| \le d(x,y)^s(g_{i,k}(x)+g_{i,k}(y)) \end{aligned}$$

for all \(x,y\in X{\setminus } E_i\) satisfying \(2^{-k-1}\le d(x,y)<2^{-k}\), and that \(\Vert (g_{i,k})\Vert _{l^q(L^p(X))}\le 2^{-i}\). This implies that

$$\begin{aligned} |(u_{i+k}-u_i)(x)-(u_{i+k}-u_i)(y)| \le d(x,y)^s\left( \sum _{j=i}^\infty g_{j,k}(x)+ \sum _{j=i}^\infty g_{j,k}(y)\right) \end{aligned}$$

for all \(i,k\ge 1\) for almost all \(x,y\in X\). This together with the pointwise convergence shows that, letting \(k\rightarrow \infty \), we have

$$\begin{aligned} |(u-u_i)(x)-(u-u_i)(y)| \le d(x,y)^s\left( \sum _{j=i}^\infty g_{j,k}(x)+ \sum _{j=i}^\infty g_{j,k}(y)\right) . \end{aligned}$$

Hence \(u-u_i\) has a fractional s-gradient \((\sum _{j=i}^\infty g_{j,k})_k\).

When \(p,q\ge 1\), we have \(\Vert (\sum _{j=i}^\infty g_{j,k})_k\Vert _{l^q(L^p(X))}\le 2^{-i+1}\). If \(0<\min \{p,q\}<1\), then, by (2.1), there is \(0<r<1\) such that

$$\begin{aligned} \left\| \left( \sum _{j=i}^\infty g_{j,k}\right) _k\right\| _{l^q(L^p(X))}^r \le C\sum _{j=i}^\infty \Vert (g_{j,k})_k\Vert _{l^q(L^p(X))}^r \le C2^{-ri}. \end{aligned}$$

Hence, in both cases, \(u-u_i\in N^s_{p,q}(X)\) and \(u_i\rightarrow u\) in \(N^s_{p,q}(X)\). Thus \(u\in N^s_{p,q}(X)\), and the claim follows. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heikkinen, T., Tuominen, H. Approximation by Hölder Functions in Besov and Triebel–Lizorkin Spaces. Constr Approx 44, 455–482 (2016). https://doi.org/10.1007/s00365-016-9322-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-016-9322-x

Keywords

Mathematics Subject Classification

Navigation