Skip to main content
Log in

Entropy and Sampling Numbers of Classes of Ridge Functions

  • Published:
Constructive Approximation Aims and scope

Abstract

We study the properties of ridge functions \(f(x)=g(a\cdot x)\) in high dimensions \(d\) from the viewpoint of approximation theory. The function classes considered consist of ridge functions such that the profile \(g\) is a member of a univariate Lipschitz class with smoothness \(\alpha >0\) (including infinite smoothness) and the ridge direction \(a\) has \(p\)-norm \(\Vert a\Vert _p\le 1\). First, we investigate entropy numbers in order to quantify the compactness of these ridge function classes in \(L_{\infty }\). We show that they are essentially as compact as the class of univariate Lipschitz functions. Second, we examine sampling numbers and consider two extreme cases. In the case \(p=2\), sampling ridge functions on the Euclidean unit ball suffers from the curse of dimensionality. Moreover, it is as difficult as sampling general multivariate Lipschitz functions, which is in sharp contrast to the result on entropy numbers. When we additionally assume that all feasible profiles have a first derivative uniformly bounded away from zero at the origin, the complexity of sampling ridge functions reduces drastically to the complexity of sampling univariate Lipschitz functions. In between, the sampling problem’s degree of difficulty varies, depending on the values of \(\alpha \) and \(p\). Surprisingly, we see almost the entire hierarchy of tractability levels as introduced in the recent monographs by Novak and Woźniakowski.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bühlmann, P., van de Geer, S.: Statistics for High-Dimensional Data. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  2. Buhmann, M.D., Pinkus, A.: Identifying linear combinations of ridge functions. Adv. Appl. Math. 22, 103–118 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Candés, E.J.: Harmonic analysis of neural networks. Appl. Comput. Harmon. Anal. 6, 197–218 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Candés, E.J., Donoho, D.L.: Ridgelets: a key to higher-dimensional intermittency? Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 357, 2495–2509 (1999)

    Article  MATH  Google Scholar 

  5. Carl, B., Stefani, I.: Entropy, Compactness and the Approximation of Operators. Cambridge Tracts in Mathematics, vol. 98. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  6. Cohen, A., Daubechies, I., DeVore, R.A., Kerkyacharian, G., Picard, D.: Capturing ridge functions in high dimensions from point queries. Constr. Approx. 35, 225–243 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Creutzig, J., Dereich, S., Müller-Kronbach, T., Ritter, K.: Infinite-dimensional quadrature and approximation of distributions. Found. Comput. Math. 9, 391–429 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cucker, F., Zhou, D.-X.: Learning theory: an approximation theory viewpoint. Cambridge Monographs on Applied and Computational Mathematics, vol. 24. Cambridge University Press, Cambridge (2007)

  9. DeVore, R.A., Lorentz, G.G.: Constructive Approximation. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  10. Edmunds, D.E., Triebel, H.: Function Spaces, Entropy Numbers, Differential Operators. Cambridge Tracts in Mathematics, vol. 120. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  11. Flad, H.J., Hackbusch, W., Khoromskij, B.N., Schneider, R.: Concepts of data-sparse tensor-product approximation in many-particle modeling. In: Olshevsky, V., Tyrtyshnikov, E. (eds.) Matrix Methods: Theory, Algorithms and Applications. World Scientific, Singapore (2010)

    Google Scholar 

  12. Fornasier, M., Schnass, K., Vybíral, J.: Learning functions of few arbitrary linear parameters in high dimensions. Found. Comput. Math. 12, 229–262 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Foucart, S., Pajor, A., Rauhut, H., Ullrich, T.: The Gelfand widths of lp-balls for \(0 < p\le 1\). J. Complexity 26, 629–640 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Friedman, J.H., Stuetzle, W.: Projection pursuit regression. J. Am. Stat. Assoc. 76, 817–823 (1981)

    Article  MathSciNet  Google Scholar 

  15. Golubev, G.K.: Asymptotically minimax estimation of a regression function in an additive model. Problemy Peredachi Informatsii 28, 101–112 (1992)

    MathSciNet  Google Scholar 

  16. Graham, R., Sloane, N.: Lower bounds for constant weight codes. IEEE Trans. Inform. Theory 26, 37–43 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning. Springer, New York (2001)

    Book  MATH  Google Scholar 

  18. Hinrichs, A., Mayer, S.: Entropy numbers of spheres in Banach and quasi-Banach spaces. University of Bonn, preprint

  19. Hinrichs, A., Novak, E., Ullrich, M., Woźniakowski, H.: The curse of dimensionality for numerical integration of smooth functions II. J. Complex. 30, 117–143 (2014)

    Article  MATH  Google Scholar 

  20. Hristache, M., Juditsky, A., Spokoiny, V.: Direct estimation of the index coefficient in a single-index model. Ann. Stat. 29, 595–623 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kühn, T.: A lower estimate for entropy numbers. J. Approx. Theory 110, 120–124 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Logan, B.P., Shepp, L.A.: Optimal reconstruction of a function from its projections. Duke Math. J. 42, 645–659 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lorentz, G., von Golitschek, M., Makovoz, Y.: Constructive Approximation: Advanced Problems. Volume 304 of Grundlehren der Mathematischen Wissenschaften, Springer, Berlin (1996)

  24. Maiorov, V.: Geometric properties of the ridge manifold. Adv. Comput. Math. 32, 239–253 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Novak, E., Triebel, H.: Function spaces in Lipschitz domains and optimal rates of convergence for sampling. Constr. Approx. 23, 325–350 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems, Volume I: Linear Information. EMS Tracts in Mathematics, vol. 6, Eur. Math. Soc. Publ. House, Zürich (2008)

  27. Novak, E., Woźniakowski, H.: Approximation of infinitely differentiable multivariate functions is intractable. J. Complex. 25, 398–404 (2009)

    Article  MATH  Google Scholar 

  28. Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems, Volume II: Standard Information for Functionals. EMS Tracts in Mathematics, vol. 12, Eur. Math. Soc. Publ. House, Zürich (2010)

  29. Paskov, S., Traub, J.: Faster evaluation of financial derivatives. J. Portf. Manag. 22, 113–120 (1995)

    Article  Google Scholar 

  30. Pinkus, A.: Approximating by ridge functions. In: Le Méhauté, A., Rabut, C., Schumaker, L.L. (eds.) Surface Fitting and Multiresolution Methods, pp. 279–292. Vanderbilt University Press, Nashville (1997)

    Google Scholar 

  31. Pinkus, A.: Approximation theory of the MLP model in neural networks. Acta Numerica 8, 143–195 (1999)

    Article  MathSciNet  Google Scholar 

  32. Raskutti, G., Wainwright, M.J., Yu, B.: Minimax-optimal rates for sparse additive models over kernel classes via convex programming. J. Mach. Learn. Res. 13, 389–427 (2012)

    MathSciNet  MATH  Google Scholar 

  33. Schütt, C.: Entropy numbers of diagonal operators between symmetric Banach spaces. J. Approx. Theory 40, 121–128 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  34. Schwab, C., Gittelson, C.J.: Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs. Acta Numerica 20, 291–467 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Traub, J., Wasilkowski, G., Woźniakowski, H.: Information-Based Complexity. Academic Press, New York (1988)

  36. Triebel, H.: Fractals and Spectra. Birkhäuser, Basel (1997)

    Book  MATH  Google Scholar 

  37. Tyagi, H., Cevher, V.: Active learning of multi-index function models. In: Bartlett, P., Pereira, F.C.N., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1475–1483. Curran Associates, Red Hook (2012)

  38. Vybíral, J.: Weak and quasi-polynomial tractability of approximation of infinitely differentiable functions. J. Complex. 30, 48–55 (2014)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Aicke Hinrichs, Erich Novak, and Mario Ullrich for pointing out relations to the paper [19], as well as Sjoerd Dirksen, Thomas Kühn, and Winfried Sickel for useful comments and discussions. The last author acknowledges the support by the DFG Research Center Matheon “Mathematics for key technologies” in Berlin. The last author was supported by the ERC CZ grant LL1203 of the Czech Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tino Ullrich.

Additional information

Communicated by Allan Pinkus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayer, S., Ullrich, T. & Vybíral, J. Entropy and Sampling Numbers of Classes of Ridge Functions. Constr Approx 42, 231–264 (2015). https://doi.org/10.1007/s00365-014-9267-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-014-9267-x

Keywords

Mathematics Subject Classification

Navigation