Skip to main content
Log in

Some Problems in the Theory of Ridge Functions

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

Let d ≥ 2 and \(E\subset\mathbb{R}^d\) be a set. A ridge function on E is a function of the form φ(a · x), where \(x=(x_1,...,x_d)\in{E},\;a=(a_1,...,a_d)\in\mathbb{R}^d\;\backslash\left\{0\right\},\;a \cdot x = \sum\nolimits_{j = 1}^d {{a_j}{x_j}}\), and φ is a real-valued function. Ridge functions play an important role both in approximation theory and mathematical physics and in the solution of applied problems. The present paper is of survey character. It addresses the problems of representation and approximation of multidimensional functions by finite sums of ridge functions. Analogs and generalizations of ridge functions are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. L. Agranovsky and E. T. Quinto, “Injectivity sets for the Radon transform over circles and complete systems of radial functions,” J. Funct. Anal. 139 (2), 383–414 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  2. R. A. Aliev and V. E. Ismailov, “On a smoothness problem in ridge function representation,” Adv. Appl. Math. 73, 154–169 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  3. V. I. Arnol’d, “On functions of three variables,” Dokl. Akad. Nauk SSSR 114 (4), 679–681 (1957) [Am. Math. Soc. Transl., Ser. 2, 28, 51–54 (1963)].

    MathSciNet  MATH  Google Scholar 

  4. M.-B. A. Babaev, “Approximation of polynomials in two variables by functions of the form φ(x) + Ψ(y),” Dokl. Akad. Nauk SSSR 193 (5), 967–969 (1970) [Sov. Math., Dokl. 11, 1034–1036 (1970)].

    MathSciNet  Google Scholar 

  5. M.-B. A. Babaev, “Approximation of polynomials in two variables by sums of functions of one variable,” Izv. Akad. Nauk Azerb. SSR, Ser. Fiz.-Tekh. Mat. Nauk, No. 2, 23–29 (1971).

    MATH  Google Scholar 

  6. M.-B. A. Babaev, “On obtaining close estimates in the approximation of functions of many variables by sums of functions of a fewer number of variables,” Mat. Zametki 12 (1), 105–114 (1972) [Math. Notes 12, 495–500 (1972)].

    MathSciNet  Google Scholar 

  7. M.-B. A. Babaev, “On the properties of the best approximation function,” Izv. Akad. Nauk Azerb. SSR, Ser. Fiz.-Tekh. Mat. Nauk, No. 3, 20–25 (1972).

    Google Scholar 

  8. M.-B. A. Babaev, “Approximation of functions of three variables by sums of functions of two variables,” Soobshch. Akad. Nauk Gruz. SSR 83 (2), 309–312 (1976).

    MathSciNet  Google Scholar 

  9. M.-B. A. Babaev, “Direct theorems for approximation of functions of many variables by sums of functions of a fewer number of variables,” in Special Issues in Function Theory (Elm, Baku, 1980), Issue 2, pp. 3–30 [in Russian].

    Google Scholar 

  10. M.-B. A. Babaev, “Extremal elements and the value of the best approximation of a monotone function on Rn by sums of functions of fewer variables,” Dokl. Akad. Nauk SSSR 265 (1), 11–13 (1982) [Sov. Math., Dokl. 26, 1–4 (1982)].

    MathSciNet  Google Scholar 

  11. M.-B. A. Babaev, “Extremal properties and two-sided estimates in approximation by sums of functions of lesser number of variables,” Mat. Zametki 36 (5), 647–659 (1984) [Math. Notes 36, 821–828 (1984)].

    MathSciNet  MATH  Google Scholar 

  12. M.-B. A. Babaev, “Best approximation by functions of fewer variables,” Dokl. Akad. Nauk SSSR 279 (2), 273–277 (1984) [Sov. Math., Dokl. 30, 629–632 (1984)].

    MathSciNet  MATH  Google Scholar 

  13. M.-B. A. Babaev, “Estimates of best approximation by quasipolynomials,” in Theory of Functions and Approximations: Proc. 2nd Saratov Winter School, 1984 (Saratov. Univ., Saratov, 1986), Part 1, pp. 91–98 [in Russian].

    Google Scholar 

  14. M.-B. A. Babaev, “The approximation of Sobolev classes of functions by sums of products of functions of fewer variables,” Tr. Mat. Inst. im. V.A. Steklova, Akad. Nauk SSSR 180, 30–32 (1987) [Proc. Steklov Inst. Math. 180, 31–33 (1989)].

    Google Scholar 

  15. M.-B. A. Babaev, “Best approximation by bilinear forms,” Mat. Zametki 46 (2), 21–33 (1989) [Math. Notes 46, 588–596 (1989)].

    MathSciNet  MATH  Google Scholar 

  16. M.-B. A. Babaev, “Approximation of Sobolev classes of functions by sums of products of functions of fewer variables,” Mat. Zametki 48 (6), 10–21 (1990) [Math. Notes 48, 1178–1186 (1990)].

    MATH  Google Scholar 

  17. M.-B. A. Babaev, “On the degree of approximation of the Sobolev class Wr q by bilinear forms in Lp for 1 = q = p = 2,” Mat. Sb. 182 (1), 122–129 (1991) [Math. USSR, Sb. 72 (1), 113–120 (1992)].

    Google Scholar 

  18. A. R. Barron, “Universal approximation bounds for superpositions of a sigmoidal function,” IEEE Trans. Inf. Theory 39 (3), 930–945 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  19. P. L. Bartlett, V. Maiorov, and R. Meir, “Almost linear VC-dimension bounds for piecewise polynomial networks,” Neural Comput. 10 (8), 2159–2173 (1998).

    Article  Google Scholar 

  20. N. Bary, “Mémoire sur la représentation finie des fonctions continues. I: Les superpositions de fonctions absolument continues,” Math. Ann. 103, 185–248 (1930).

    Article  MathSciNet  MATH  Google Scholar 

  21. N. Bary, “Mémoire sur la représentation finie des fonctions continues. II: Le théorème fondamental sur la représentation finie,” Math. Ann. 103, 598–653 (1930).

    Article  MathSciNet  MATH  Google Scholar 

  22. D. Bazarkhanov and V. Temlyakov, “Nonlinear tensor product approximation of functions,” J. Complexity 31 (6), 867–884 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Braess and A. Pinkus, “Interpolation by ridge functions,” J. Approx. Theory 73 (2), 218–236 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  24. Yu. A. Brudnyi, “Approximation of functions of n variables by quasipolynomials,” Izv. Akad. Nauk SSSR, Ser. Mat. 34 (3), 564–583 (1970) [Math. USSR, Izv. 4 (3), 568–586 (1970)].

    MathSciNet  Google Scholar 

  25. M. D. Buhmann, “Radial functions on compact support,” Proc. Edinb. Math. Soc., Ser. 2, 41 (1), 33–46 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  26. M. D. Buhmann, “Radial basis functions,” Acta Numerica 9, 1–38 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  27. M. D. Buhmann and A. Pinkus, “Identifying linear combinations of ridge functions,” Adv. Appl. Math. 22 (1), 103–118 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  28. E. J. Candès, “Harmonic analysis of neural networks,” Appl. Comput. Harmon. Anal. 6 (2), 197–218 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  29. E. J. Candès, “Ridgelets: estimating with ridge functions,” Ann. Stat. 31 (5), 1561–1599 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  30. R. Courant and D. Hilbert, Methoden der mathematischen Physik (J. Springer, Berlin, 1937), Vol.2.

  31. C. de Boor, R. A. DeVore, and A. Ron, “Approximation from shift-invariant subspaces of L2(Rd),” Trans. Am. Math. Soc. 341 (2), 787–806 (1994).

    MATH  Google Scholar 

  32. N. G. de Bruijn, “Functions whose differences belong to a given class,” Nieuw Arch. Wiskd., Ser. 2, 23, 194–218 (1951).

    MathSciNet  MATH  Google Scholar 

  33. N. G. de Bruijn, “A difference property for Riemann integrable functions and for some similar classes of functions,” Nederl. Akad. Wet., Proc., Ser. A 55, 145–151 (1952).

    MathSciNet  MATH  Google Scholar 

  34. R. A. DeVore, K. I. Oskolkov, and P. P. Petrushev, “Approximation by feed-forward neural networks,” Ann. Numer. Math. 4, 261–287 (1997).

    MathSciNet  MATH  Google Scholar 

  35. S. P. Diliberto and E. G. Straus, “On the approximation of a function of several variables by the sum of functions of fewer variables,” Pac. J. Math. 1, 195–210 (1951).

    Article  MathSciNet  MATH  Google Scholar 

  36. D. L. Donoho and I. M. Johnstone, “Projection-based approximation and a duality with kernel methods,” Ann. Stat. 17 (1), 58–106 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  37. J. Duchon, “Splines minimizing rotation-invariant semi-norms in Sobolev spaces,” in Constructive Theory of Functions of Several Variables: Proc. Conf. Oberwolfach, 1976 (Springer, Berlin, 1977), Lect. Notes Math. 571, pp. 85–100.

    Chapter  Google Scholar 

  38. N. Dyn, F. J. Narcowich, and J. D. Ward, “Variational principles and Sobolev-type estimates for generalized interpolation on a Riemannian manifold,” Constr. Approx. 15 (2), 175–208 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  39. R. E. Edwards, “Spans of translates in Lp(G),” J. Aust. Math. Soc. 5, 216–233 (1965).

    Article  MATH  Google Scholar 

  40. S. Ellacott and D. Bose, Neural Networks: Deterministic Methods of Analysis (Int. Thomson Comput. Press, London, 1996).

    Google Scholar 

  41. J. H. Friedman and W. Stuetzle, “Projection pursuit regression,” J. Am. Stat. Assoc. 76, 817–823 (1981).

    Article  MathSciNet  Google Scholar 

  42. A. L. Garkavi, V. A. Medvedev, and S. Ya. Khavinson, “On the existence of a best uniform approximation of a function of several variables by the sum of functions of fewer variables,” Mat. Sb. 187 (5), 3–14 (1996) [Sb. Math. 187, 623–634 (1996)].

    Article  MathSciNet  MATH  Google Scholar 

  43. M. v. Golitschek and W. A. Light, “Approximation by solutions of the planar wave equation,” SIAM J. Numer. Anal. 29 (3), 816–830 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  44. Y. Gordon, V. Maiorov, M. Meyer, and S. Reisner, “On the best approximation by ridge functions in the uniform norm,” Constr. Approx. 18 (1), 61–85 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  45. H. Herrlich, Axiom of Choice (Springer, Berlin, 2006), Lect. Notes Math. 1876.

    MATH  Google Scholar 

  46. V. E. Ismailov, “Methods for computing the least deviation from the sums of functions of one variable,” Sib. Mat. Zh. 47 (5), 1076–1082 (2006) [Sib. Math. J. 47, 883–888 (2006)].

    Article  MATH  Google Scholar 

  47. V. E. Ismailov, “Characterization of an extremal sum of ridge functions,” J. Comput. Appl. Math. 205 (1), 105–115 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  48. V. E. Ismailov, “On the representation by linear superpositions,” J. Approx. Theory 151 (2), 113–125 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  49. V. E. Ismailov, “On the proximinality of ridge functions,” Saraevo J. Math. 5 (1), 109–118 (2009).

    MathSciNet  MATH  Google Scholar 

  50. V. E. Ismailov, “A review of some results on ridge function approximation,” Azerb. J. Math. 3 (1), 3–51 (2013).

    MathSciNet  MATH  Google Scholar 

  51. V. E. Ismailov and A. Pinkus, “Interpolation on lines by ridge functions,” J. Approx. Theory 175, 91–113 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  52. Y. Ito and K. Saito, “Superposition of linearly independent functions and finite mappings by neural networks,” Math. Sci. 21 (1), 27–33 (1996).

    MathSciNet  MATH  Google Scholar 

  53. F. John, Plane Waves and Spherical Means Applied to Partial Differential Equations (Interscience, New York, 1955).

    MATH  Google Scholar 

  54. L. K. Jones, “A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training,” Ann. Stat. 20 (1), 608–613 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  55. L. K. Jones, “The computational intractability of training sigmoidal neural networks,” IEEE Trans. Inf. Theory 43 (1), 167–173 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  56. B. S. Kashin, “On some properties of the space of trigonometric polynomials that are related to uniform convergence,” Soobshch. Akad. Nauk Gruz. SSR 93 (2), 281–284 (1979).

    MATH  Google Scholar 

  57. S. Ya. Khavinson, “A Chebyshev theorem for the approximation of a function of two variables by sums of the type φ(x) + ψ(y),” Izv. Akad. Nauk SSSR, Ser. Mat. 33 (3), 650–666 (1969) [Math. USSR, Izv. 3 (3), 617–632 (1969)].

    MathSciNet  Google Scholar 

  58. S. Ya. Khavinson, Best Approximation by Linear Superpositions (Approximate Nomography) (Am. Math. Soc., Providence, RI, 1997), Transl. Math. Monogr. 159.

    MATH  Google Scholar 

  59. G. M. Khenkin, “Linear superpositions of continuously differentiable functions,” Dokl. Akad. Nauk SSSR 157 (2), 288–290 (1964) [Sov. Math., Dokl. 5, 948–950 (1964)].

    MathSciNet  MATH  Google Scholar 

  60. A. N. Kolmogorov, “On the representation of continuous functions of several variables by superpositions of continuous functions of a smaller number of variables,” Dokl. Akad. Nauk SSSR 108 (2), 179–182 (1956) [Am. Math. Soc. Transl., Ser. 2, 17, 369–373 (1961)].

    MathSciNet  MATH  Google Scholar 

  61. A. N. Kolmogorov, “On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition,” Dokl. Akad. Nauk SSSR 114 (5), 953–956 (1957) [Am. Math. Soc. Transl., Ser. 2, 28, 55–59 (1963)].

    MathSciNet  MATH  Google Scholar 

  62. V. N. Konovalov, K. A. Kopotun, and V. E. Maiorov, “Convex polynomial and ridge approximation of Lipschitz functions in Rd,” Rocky Mt. J. Math. 40 (3), 957–976 (2010).

    Article  MATH  Google Scholar 

  63. V. N. Konovalov, D. Leviatan, and V. E. Maiorov, “Approximation by polynomials and ridge functions of classes of s-monotone radial functions,” J. Approx. Theory 152 (1), 20–51 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  64. V. N. Konovalov, D. Leviatan, and V. E. Maiorov, “Approximation of Sobolev classes by polynomials and ridge functions,” J. Approx. Theory 159 (1), 97–108 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  65. V. N. Konovalov and V. E. Maiorov, “Widths of some classes of convex functions and bodies,” Izv. Ross. Akad. Nauk, Ser. Mat. 74 (1), 135–158 (2010) [Izv. Math. 74, 127–150 (2010)].

    Article  MathSciNet  MATH  Google Scholar 

  66. S. V. Konyagin and A. A. Kuleshov, “On the continuity of finite sums of ridge functions,” Mat. Zametki 98 (2), 308–309 (2015) [Math. Notes 98, 336–338 (2015)].

    Article  MathSciNet  MATH  Google Scholar 

  67. S. V. Konyagin and A. A. Kuleshov, “On some properties of finite sums of ridge functions defined on convex subsets of Rn,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 293, 193–200 (2016) [Proc. Steklov Inst. Math. 293, 186–193 (2016)].

    MATH  Google Scholar 

  68. S. V. Konyagin and V. N. Temlyakov, “Some error estimates in learning theory,” in Approximation Theory: A Volume Dedicated to Borislav Bojanov, Ed. by D. K. Dimitrov, G. Nikolov, and R. Uluchev (Marin Drinov Acad. Publ. House, Sofia, 2004), pp. 126–144.

    Google Scholar 

  69. A. Kroó, “On approximation by ridge functions,” Constr. Approx. 13 (4), 447–460 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  70. A. A. Kuleshov, “On some properties of smooth sums of ridge functions,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 294, 99–104 (2016) [Proc. Steklov Inst. Math. 294, 89–94 (2016)].

    MathSciNet  MATH  Google Scholar 

  71. A. A. Kuleshov, “Continuous sums of ridge functions on a convex body and the class VMO,” Mat. Zametki 102 (6), 866–873 (2017) [Math. Notes 102, 799–805 (2017)].

    Article  MathSciNet  MATH  Google Scholar 

  72. A. A. Kuleshov, “Continuous sums of ridge functions on a convex body with Dini condition on moduli of continuity at boundary points,” Anal. Math. (in press).

  73. V. Kůrková, “Approximation of functions by perceptron networks with bounded number of hidden units,” Neural Networks 8 (5), 745–750 (1995).

    Article  Google Scholar 

  74. V. Kůrková, “Trade-off between the size of parameters and the number of units in one-hidden-layer networks,” Neural Network World 6 (2), 191–200 (1996).

    Google Scholar 

  75. W. Light, “Ridge functions, sigmoidal functions and neural networks,” in Approximation Theory VII: Proc. 7th Int. Symp., Austin, TX, 1992, Ed. by E. W. Cheney et al. (Academic, Boston, 1993), pp. 163–206.

    Google Scholar 

  76. W. A. Light and H. S. J. Wayne, “Some aspects of radial basis function approximation,” in Approximation Theory, Spline Functions and Applications: Proc. NATO Adv. Study Inst., Maratea, 1991, Ed. by S. P. Singh et al. (Kluwer, Dordrecht, 1992), pp. 163–190.

    Chapter  Google Scholar 

  77. S. Lin, F. Cao, and Z. Xu, “Essential rate for approximation by spherical neural networks,” Neural Networks 24 (7), 752–758 (2011).

    Article  MATH  Google Scholar 

  78. V. Ya. Lin and A. Pinkus, “Fundamentality of ridge functions,” J. Approx. Theory 75 (3), 295–311 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  79. V. Ya. Lin and A. Pinkus, “Approximation of multivariate functions,” in Advances in Computational Mathematics: Proc. Conf., New Delhi, 1993, Ed. by H. P. Dikshit and C. A. Micchelli (World Sci., Singapore, 1994), pp. 257–265.

    Google Scholar 

  80. B. F. Logan and L. A. Shepp, “Optimal reconstruction of a function from its projections,” Duke Math. J. 42 (4), 645–659 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  81. W. R. Madych and S. A. Nelson, “Multivariate interpolation and conditionally positive definite functions. II,” Math. Comput. 54, 211–230 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  82. V. E. Maiorov, “On best approximation by ridge functions,” J. Approx. Theory 99 (1), 68–94 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  83. V. Maiorov, “On best approximation of classes by radial functions,” J. Approx. Theory 120 (1), 36–70 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  84. V. Maiorov, “On lower bounds in radial basis approximation,” Adv. Comput. Math. 22 (2), 103–113 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  85. V. Maiorov, “Optimal non-linear approximation using sets of finite pseudodimension,” East J. Approx. 11 (1), 1–19 (2005).

    MathSciNet  MATH  Google Scholar 

  86. V. Maiorov, “Pseudo-dimension and entropy of manifolds formed by affine-invariant dictionary,” Adv. Comput. Math. 25 (4), 435–450 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  87. V. Maiorov, “Approximation by neural networks and learning theory,” J. Complexity 22 (1), 102–117 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  88. V. E. Maiorov, “Best approximation by ridge functions in Lp-spaces,” Ukr. Math. J. 62 (3), 452–466 (2010).

    Article  Google Scholar 

  89. V. Maiorov, “Geometric properties of the ridge function manifold,” Adv. Comput. Math. 32 (2), 239–253 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  90. V. E. Maiorov and R. Meir, “On the near optimality of the stochastic approximation of smooth functions by neural networks,” Adv. Comput. Math. 13 (1), 79–103 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  91. V. Maiorov and R. Meir, “Lower bounds for multivariate approximation by affine-invariant dictionaries,” IEEE Trans. Inf. Theory 47 (4), 1569–1575 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  92. V. E. Maiorov, R. Meir, and J. Ratsaby, “On the approximation of functional classes equipped with a uniform measure using ridge functions,” J. Approx. Theory 99 (1), 95–111 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  93. V. E. Maiorov, K. I. Oskolkov, and V. N. Temlyakov, “Gridge approximation and Radon compass,” in Approximation Theory: A Volume Dedicated to B. Sendov, Ed. by B. D. Bojanov (DARBA, Sofia, 2002), pp. 284–309.

    MATH  Google Scholar 

  94. V. Maiorov and A. Pinkus, “Lower bounds for approximation by MLP neural networks,” Neurocomputing 25, 81–91 (1999).

    Article  MATH  Google Scholar 

  95. Y. Makovoz, “Random approximants and neural networks,” J. Approx. Theory 85 (1), 98–109 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  96. D. E. Marshall and A. G. O’Farrell, “Uniform approximation by real functions,” Fundam. Math. 104, 203–211 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  97. R. Meir and V. E. Maiorov, “On the optimality of neural-network approximation using incremental algorithms,” IEEE Trans. Neural Netw. 11 (2), 323–337 (2000).

    Article  Google Scholar 

  98. H. N. Mhaskar, “Neural networks for optimal approximation of smooth and analytic functions,” Neural Comput. 8 (1), 164–177 (1996).

    Article  Google Scholar 

  99. H. N. Mhaskar and C. A. Micchelli, “Approximation by superposition of sigmoidal and radial basis functions,” Adv. Appl. Math. 13 (3), 350–373 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  100. H. N. Mhaskar and C. A. Micchelli, “Degree of approximation by neural and translation networks with a single hidden layer,” Adv. Appl. Math. 16 (2), 151–183 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  101. H. N. Mhaskar, F. J. Narcowich, and J. D. Ward, “Approximation properties of zonal function networks using scattered data on the sphere,” Adv. Comput. Math. 11 (2–3), 121–137 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  102. F. J. Narcowich, J. D. Ward, and H. Wendland, “Refined error estimates for radial basis function interpolation,” Constr. Approx. 19 (4), 541–564 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  103. Yu. P. Ofman, “Best approximation of functions of two variables by functions of the form φ(x) + ψ(y),” Izv. Akad. Nauk SSSR, Ser. Mat. 25 (2), 239–252 (1961) [Am. Math. Soc. Transl., Ser. 2, 44, 12–28 (1965)].

    MathSciNet  Google Scholar 

  104. A. Olevskii, “Completeness in L2(R) of almost integer translates,” C. R. Acad. Sci. Paris, Sér. 1, 324 (9), 987–991 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  105. K. I. Oskolkov, “Ridge approximation, Chebyshev–Fourier analysis and optimal quadrature formulas,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 219, 269–285 (1997) [Proc. Steklov Inst. Math. 219, 265–280 (1997)].

    MATH  Google Scholar 

  106. K. I. Oskolkov, “Linear and nonlinear methods of relief approximation,” in Metric Theory of Functions and Related Problems of Analysis (AFTs, Moscow, 1999), pp. 165–195. Engl. transl.: J. Math. Sci. 155 (1), 129–152 (2008).

    Google Scholar 

  107. P. P. Petrushev, “Approximation by ridge functions and neural networks,” SIAM J. Math. Anal. 30 (1), 155–189 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  108. A. Pinkus, “Some density problems in multivariate approximation,” in Approximation Theory: Proc. IDoMAT 95 (Akad. Verlag, Berlin, 1995), pp. 277–284.

    Google Scholar 

  109. A. Pinkus, “TDI-subspaces of C(Rd) and some density problems from neural networks,” J. Approx. Theory 85 (3), 269–287 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  110. A. Pinkus, “Approximating by ridge functions,” in Surface Fitting and Multiresolution Methods (Vanderbilt Univ. Press, Nashville, TN, 1997), pp. 279–292.

    Google Scholar 

  111. A. Pinkus, “Approximation theory of the MLP model in neural networks,” Acta Numerica 8, 143–195 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  112. A. Pinkus, Ridge Functions (Cambridge Univ. Press, Cambridge, 2015), Cambridge Tracts Math. 205.

    Book  MATH  Google Scholar 

  113. G. Pisier, “Remarques sur un résultat non publié de B. Maurey,” in Séminaire d’Analyse Fonctionnelle 1980–1981 (éc. Polytech., Cent. Math., Palaiseau, 1981), Exp.5.

    MATH  Google Scholar 

  114. M. K. Potapov, “Approximation ‘by an angle’,” in Proc. Conf. on Constructive Theory of Functions (Approximation Theory), Budapest, 1969 (Akad. Kiadó, Budapest, 1972), pp. 371–399.

    Google Scholar 

  115. M. K. Potapov, “Approximation ‘by an angle’ and embedding theorems,” Math. Balk. 2, 183–198 (1972).

    Google Scholar 

  116. M. K. Potapov, “The Hardy–Littlewood and Marcinkiewicz–Littlewood–Paley theorems, approximation ‘by an angle’, and the imbedding of certain classes of functions,” Mathematica 14 (2), 339–362 (1972).

    MathSciNet  Google Scholar 

  117. M. K. Potapov, “Imbedding classes of functions with dominant mixed modulus of smoothness,” Tr. Mat. Inst. im. V.A. Steklova, Akad. Nauk SSSR 131, 199–210 (1974) [Proc. Steklov Inst. Math. 131, 206–218 (1975)].

    Google Scholar 

  118. M. K. Potapov, “Imbedding theorems in a mixed metric,” Tr. Mat. Inst. im. V.A. Steklova, Akad. Nauk SSSR 156, 143–156 (1980) [Proc. Steklov Inst. Math. 156, 155–171 (1983)].

    MathSciNet  MATH  Google Scholar 

  119. M. K. Potapov, B. V. Simonov, and S. Yu. Tikhonov, “Mixed moduli of smoothness in Lp, 1 < p < 8: a survey,” Surv. Approx. Theory 8, 1–57 (2013).

    MathSciNet  MATH  Google Scholar 

  120. M. J. D. Powell, “The theory of radial basis function approximation in 1990,” in Advances in Numerical Analysis, Vol. 2: Wavelets, Subdivision Algorithms, and Radial Basis Functions, Ed. by W. Light (Clarendon, Oxford, 1992), pp. 105–210.

    Google Scholar 

  121. J. Ratsaby and V. Maiorov, “On the value of partial information for learning from examples,” J. Complexity 13 (4), 509–544 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  122. R. Schaback, “Approximation by radial basis functions with finitely many centers,” Constr. Approx. 12 (3), 331–340 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  123. L. Schwartz, “Sur certaines familles non fondamentales de fonctions continues,” Bull. Soc. Math. France 72, 141–145 (1944).

    Article  MathSciNet  MATH  Google Scholar 

  124. E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces (Princeton Univ. Press, Princeton, NJ, 1971).

    MATH  Google Scholar 

  125. M. I. Stesin, “Aleksandrov diameters of finite-dimensional sets and classes of smooth functions,” Dokl. Akad. Nauk SSSR 220 (6), 1278–1281 (1975) [Sov. Math., Dokl. 16, 252–256 (1975)].

    MathSciNet  MATH  Google Scholar 

  126. V. N. Temlyakov, Approximation of Periodic Functions (Nova Sci. Publ., Commack, NY, 1993).

    MATH  Google Scholar 

  127. V. N. Temlyakov, “On approximation by ridge functions,” Preprint (Dept. Math., Univ. S. Carol., Columbia, SC, 1996).

    Google Scholar 

  128. V. N. Temlyakov, “Nonlinear methods of approximation,” Found. Comput. Math. 3 (1), 33–107 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  129. V. Temlyakov, Greedy Approximation (Cambridge Univ. Press, Cambridge, 2011).

    Book  MATH  Google Scholar 

  130. V. M. Tikhomirov, Some Problems in Approximation Theory (Mosk. Gos. Univ., Moscow, 1976) [in Russian].

    Google Scholar 

  131. S. B. Vakarchuk, “K-functionals and n-widths of classes of periodic functions of two variables,” East J. Approx. 8 (2), 161–182 (2002).

    MathSciNet  MATH  Google Scholar 

  132. S. B. Vakarchuk and A. V. Shvachko, “Kolmogorov-type inequalities for derived functions of two variables with application for approximation by an ‘angle’,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 11, 3–22 (2015) [Russ. Math. 59 (11), 1–18 (2015)].

    MathSciNet  MATH  Google Scholar 

  133. F. P. Vasil’ev, Optimization Methods (Faktorial, Moscow, 2002) [in Russian].

    Google Scholar 

  134. N. Ya. Vilenkin, Special Functions and the Theory of Group Representations (Nauka, Moscow, 1965; Am. Math. Soc., Providence, RI, 1968).

    Book  MATH  Google Scholar 

  135. A. G. Vitushkin, “Some properties of linear superpositions of smooth functions,” Dokl. Akad. Nauk SSSR 156 (5), 1003–1006 (1964) [Sov. Math., Dokl. 5, 741–744 (1964)].

    MathSciNet  MATH  Google Scholar 

  136. A. G. Vitushkin, “Proof of the existence of analytic functions of several complex variables which are not representable by superpositions of continuously differentiable functions of fewer variables,” Dokl. Akad. Nauk SSSR 156 (6), 1258–1261 (1964) [Sov. Math., Dokl. 5, 793–796 (1964)].

    MathSciNet  MATH  Google Scholar 

  137. A. G. Vitushkin, “On Hilbert’s thirteenth problem,” in Hilbert’s Problems, Ed. by P. S. Aleksandrov (Nauka, Moscow, 1969), pp. 163–170 [in Russian].

    Google Scholar 

  138. B. A. Vostretsov and M. A. Kreines, “Approximation of continuous functions by superpositions of plane waves,” Dokl. Akad. Nauk SSSR 140 (6), 1237–1240 (1961) [Sov. Math., Dokl. 2, 1326–1329 (1961)].

    MathSciNet  Google Scholar 

  139. H. Wendland, “Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree,” Adv. Comput. Math. 4, 389–396 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  140. H. Wendland, “Error estimates for interpolation by compactly supported radial basis functions of minimal degree,” J. Approx. Theory 93 (2), 258–272 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  141. Z.-M. Wu and R. Schaback, “Local error estimates for radial basis function interpolation of scattered data,” IMA J. Numer. Anal. 13 (1), 13–27 (1993).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Konyagin.

Additional information

Original Russian Text © S.V. Konyagin, A.A. Kuleshov, V.E. Maiorov, 2018, published in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2018, Vol. 301, pp. 155–181.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konyagin, S.V., Kuleshov, A.A. & Maiorov, V.E. Some Problems in the Theory of Ridge Functions. Proc. Steklov Inst. Math. 301, 144–169 (2018). https://doi.org/10.1134/S0081543818040120

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543818040120

Navigation