1 Introduction

The paper is devoted to the question of equivalence of two types of direct theorems in approximation theory:

  1. (a)

    the case of smooth functions (Favard estimates);

  2. (b)

    the case of arbitrary continuous functions (Jackson–Stechkin estimates).

We show that the Jackson–Stechkin inequality with the optimal constants follows from the Favard inequality (see the proof of Theorem 2 and (5.3)). The main tool in the proof of this statement is the function W 2k , measuring the smoothness of an integrable periodic function. Modulus W 2k is the special case of the generalized modulus of smoothness introduced by H. Shapiro [2, 15]. This characteristic is more delicate than the standard modulus of continuity of order 2k. The function W 2k allows us to obtain asymptotically sharp results for the approximation by Favard-type operators. For example, we obtain the Jackson–Stechkin inequality for the periodic splines with constants close to optimal.

The following two facts play a key role here:

  1. 1.

    Uniform (in k) boundedness of operators W 2k :

    $$W_{2k}(f,h)\le3\|f\|, \quad f\in C(\mathbb{T}),\ h>0. $$
  2. 2.

    The Bernstein–Nikolsky–Stechkin inequality in terms of W 2k .

The paper is organized as follows. In the second section, we introduce notation. In the third section, we consider the smooth characteristic W 2k and prove the uniform boundedness of W 2k (Lemma 1). The technical details of the proof can be found in the Appendix. Section 4 is devoted to the analog of the classical Bernstein–Nikolsky–Stechkin estimate in terms of W 2k (Theorem 1). The next important result in the paper is Theorem 2, which gives a simple and general proof of the Jackson–Stechkin theorem. We improve and simplify the main constructions from [9]. In the fifth section, we introduce Favard-type operators and show that Favard-type operators give Jackson–Stechkin theorems with almost optimal constants. That result is a consequence of the sharp inequality for the trigonometric approximation. We will show that to prove Jackson–Stechkin theorems with almost optimal constants, it is sufficient to obtain a Favard-type inequality (Theorem 3). Theorem 4 is devoted to approximation by periodic splines. Finally, we give in Theorems 5 and 6 the classical almost sharp variants of Theorems 1 and 3.

2 Notation

Let \(\mathbb{I}\) denote either a one-dimensional torus \(\mathbb{T}=[-\pi,\pi)=\mathbb{R}/(2\pi\mathbb{Z})\) or the real line \(\mathbb{R}=(-\infty,\infty)\), and let \(L(\mathbb{I})\) be the space of integrable functions \(f:\mathbb{I}\rightarrow\mathbb{R}\) with the norm \(\|f\|_{L(\mathbb{I})}=\int_{\mathbb{I}}|f(t)|\,dt\). The space of continuous 2π-periodic functions with the norm

$$\|f\|=\|f\|_{C(\mathbb{T})}=\max \bigl\{\bigl|f(t)\bigr|: t\in\mathbb{T} \bigr\} $$

is denoted by \(C(\mathbb{T})\). In this paper, we are interested in the approximation of a real continuous function \(f \in C (\mathbb{T})\) by trigonometric polynomials τT n of degree n:

$$\tau(x):= \sum_{j=-n}^n \alpha_j \exp (ijx), \quad\alpha_j = \overline{\alpha}_{-j}. $$

By ∗ we denote the convolution operation in \(L(\mathbb{R})\) (see [16, Chap. 1, Sect. 1]):

$$ (f{\ast}g) (x)=\int_{\mathbb{R}}f(x-t)g(t)\,dt, $$

and by ⊛ the periodic convolution operation in \(L(\mathbb{T})\) (see [10, Chap. 1, Sect. 1.5.4], [4, Chap. 3, Sect. 3.1]):

$$ (f{\circledast}g) (x)=\int_{\mathbb{T}}f(x-t)g(t)\,dt. $$

Let χ h (x), h>0, be the characteristic function of the interval (−h/2,h/2) normalized in \(L(\mathbb{R})\):

$$ \chi_{h}(x)= \begin{cases} 1/h, & x\in(-h/2,h/2), \\ 0, & x\notin(-h/2,h/2), \end{cases} \qquad \int_\mathbb{R}\chi_{h}(t)\,dt=1. $$
(2.1)

We will use the well-known periodization method (see [16, Chap. 7, Sect. 2, (2.1)]), which for a given \(f\in{L(\mathbb{R})}\) provides the 2π-periodic function \(\widetilde{f}\) from \({L(\mathbb{T})}\) by the formula

$$ \widetilde{f}(x)=\sum_{j\in\mathbb{Z}}f(x+2\pi j), $$

and (see the proof of Theorem 2.4 from [16, Chap. 7, Sect. 2])

$$ \|\widetilde{f}\|_{L(\mathbb{T})}\le\|{f} \|_{L(\mathbb{R})},\quad f\in{L(\mathbb{R})}. $$
(2.2)

For a nonnegative \(f\in{L(\mathbb{R})}\), the inequality (2.2) changes to the equality

$$ \|\widetilde{f}\|_{L(\mathbb{T})}=\|{f} \|_{L(\mathbb{R})},\quad f\in{L(\mathbb{R})},\ f\ge0. $$
(2.3)

For example, the 2π-periodization of χ h is given by the formula

$$\widetilde{\chi}_{h}(x)=\sum_{j\in\mathbb{Z}} \chi_{h}(x+2\pi j), $$

and (2.1), (2.3) imply that \(\|\widetilde{\chi}_{h}\|_{L(\mathbb{T})}=1\) for each h>0. The Fourier series for \(\widetilde{\chi}_{h}\) is

$$ \widetilde{\chi}_{h}(x) =\frac{1}{2\pi} \sum_{j\in\mathbb{Z}}\operatorname{sinc}({j}h/2)\exp(ijx) = \frac{1}{\pi} \Biggl[\frac{1}{2}+\sum_{j=1}^{\infty} \operatorname{sinc} ({j}h/2)\cos{j}x \Biggr], $$
(2.4)

where

$$ \operatorname{sinc}(x):=\frac{\sin x}{x}\quad\mbox{for }x \not =0, \qquad \operatorname{sinc}(0):=1. $$

Following [14, Chap. 3, Sect. 2, (III, 2; 96)], we write

$$\begin{aligned} f^{1*}(x)&:=f(x),\qquad f^{r*}(x):=\bigl(f*f^{(r-1)*} \bigr) (x) \quad\mbox{for } r=2,3,\ldots,\ f\in L(\mathbb{R}); \\ g^{{1\,\circledast}}(x)&:=g(x),\qquad g^{{r\,\circledast}}(x) := \bigl(g \circledast g^{{(r-1)\,\circledast}} \bigr) (x) \quad\mbox{for } r=2,3,\ldots,\ g \in L(\mathbb{T}), \end{aligned}$$

and consider the convolution squares

$$\begin{aligned} \phi_h(x) & := \chi_h^{2*}(x)= \begin{cases} \frac{1}{h} (1-\frac{|x|}{h} ), & x\in(-h,h), \\ 0, & x\notin(-h,h); \end{cases} \end{aligned}$$
(2.5)
$$\begin{aligned} \widetilde{\phi}_h(x) & := \widetilde{\chi}_h^{{2\,\circledast}}(x) =\frac{1}{2\pi}\sum _{j\in\mathbb{Z}}\operatorname{sinc}^2({j}h/2) \exp(ijx) =\sum_{j\in\mathbb{Z}}\phi_{h}(x+2\pi j). \end{aligned}$$
(2.6)

To prove equalities (2.6), it is sufficient to apply (2.4) and properties of periodic convolution (see [4, Part 3, Sect. 3.1]). Notably, the convolution f ⊛ g of the functions f,g from \(L(\mathbb{T})\) belongs to \(L(\mathbb{T})\), and for the Fourier coefficients of the convolution we have the following identity:

$$ \widehat{(f\,{\circledast}\,g)}_{j}={2\pi} \cdot\widehat{\varphi}_{j} \cdot \widehat{f}_{j} \quad \mbox{for all } j\in\mathbb{Z}, $$

where we use the standard notation for Fourier coefficients of \(f\in{L(\mathbb{T})}\):

$$\widehat{f}_{j}:=\frac{1}{2\pi} \int_{{\mathbb{T}}}f(t)\exp(-ijt) \,dt,\quad j\in\mathbb{Z}. $$

The last equality in (2.6) follows from the general fact about periodization (see [16, Part 7, Sect. 2, Theorem 2.4, Corollary 2.6]).

Note that (2.3), (2.5), (2.6) imply that

$$ \|\phi_h\|_{L(\mathbb{R})}=\|\widetilde{ \phi}_h\|_{L(\mathbb{T})}=1 $$
(2.7)

for each h>0.

3 Special Modulus of Continuity

For fixed h>0 and \(k\in\mathbb{N}\), consider the following operator from \(C(\mathbb{T})\) to \(C(\mathbb{T})\):

$$ W_{2k}(f,x,h):=(-1)^k \frac{1}{\binom{2k}{k}}\int_{\mathbb{R}} {\varDelta }_{t}^{2k}f(x) \phi_h(t)\,dt, $$
(3.1)

where

$${\varDelta }_t^{2k} f(x)=\sum_{j=-k}^k(-1)^{j+k} \binom{2k}{k+j}f(x+jt) $$

is a central difference of order 2k with the step t. The following representation is valid (cf. [9, Sect. 3]):

$$ W_{2k}(f,x,h)=f(x)-(f*\varLambda_{k,h})(x). $$
(3.2)

Here

$$ \varLambda_{k,h}(x)=2\sum_{j=1}^k (-1)^{j+1}a_j\phi_{jh}(x), $$
(3.3)
$$ a_j:=\frac{\binom{2k}{k-j}}{\binom{2k}{k}},\qquad \phi_{jh}(x)=\frac{1}{jh} \biggl(1-\frac{|x|}{jh} \biggr)_{+},\qquad u_+:=\max\{u,\,0\}. $$
(3.4)

For a 2π-periodic function \(f\in{C(\mathbb{T})}\), this gives the following representation:

$$ W_{2k}(f,x,h)=f(x)-(f \circledast\widetilde{ \varLambda}_{k,h}) (x), $$
(3.5)

where

$$ \widetilde{\varLambda}_{k,h}(x) =\sum_{\ell\in\mathbb{Z}}{\varLambda}_{k,h}(x+2\pi\ell) =2\sum_{j=1}^k(-1)^{j+1}a_j \widetilde{\phi}_{jh}(x). $$
(3.6)

Note that for the positive numbers a j =a j (k), j=1,…,k, we have

$$ 2\sum_{j=1}^k (-1)^{j+1}a_j=1,\qquad 2\sum_{j=1}^k a_j=\frac{2^{2k}}{\binom{2k}{k}}-1\asymp\sqrt{k}. $$
(3.7)

The formulas (2.6), (3.6) and the first equality in (3.7) imply that

$$\int_{\mathbb{T}}\widetilde{\varLambda}_{k,h}(x)\,dx=1 \quad\mbox{for } k=1,2,3,\ldots. $$

We will show that

$$\|\widetilde{\varLambda}_{k,h}\|_{L(\mathbb{T})}<2\quad\mbox{for all} \ h>0\ \mbox{and}\ k\in\mathbb{N}. $$

For h>0 and \(f\in{C}(\mathbb{T})\), let

$$\begin{aligned} W_{2k}(f,h) & :=\sup_{x\in\mathbb{T}}\bigl|f(x)-(f\circledast\widetilde{\varLambda }_{k,h}) (x)\bigr| =\bigl\|W_{2k}(f,\cdot,h)\bigr\|, \end{aligned}$$
(3.8)
$$\begin{aligned} W_{2k}^*(f,\delta)&:=\sup_{0<h\le\delta}W_{2k}(f,h). \end{aligned}$$
(3.9)

The definitions (3.8), (3.9), and (3.1) imply that

$$ W_{2k}(f,\delta)\le{W_{2k}^*(f,\delta)} \le\frac{1}{\binom{2k}{k}}\sup_{|t|\le\delta}\bigl\|{\varDelta }_{t}^{2k}f \bigr\| =:\frac{1}{\binom{2k}{k}}\,\omega_{2k}(f,\delta),\quad f\in{C}(\mathbb{T}), \ \delta>0 . $$

Lemma 1

If h>0, \(k\in\mathbb{N}\) and \(f \in {C}(\mathbb{T})\), then

$$W_{2k}(f, h) \le3\|f\|. $$

Proof

For every h>0 and \(f\in{C}(\mathbb{T})\), we have (see (3.2)–(3.6))

$$ W_{2k}(f,x,h)=f(x)-(f \circledast\widetilde{ \varLambda }_{k,h}) (x)=f(x)-(f*\varLambda_{k,h}) (x), $$
(3.10)

where

$$\varLambda_{k,h}(x)=\frac{2}{{\binom{2k}{k}}} \sum_{j=1}^k(-1)^{j+1}{\binom{2k}{k-j}} \frac{1}{jh}\, \biggl(1-\frac{|x|}{jh} \biggr)_{+}. $$

First, consider the case k=1. In this case, we have (see (2.5), (2.6))

$$\begin{aligned} \varLambda_{1,h}(x) & =\phi_h(x)=\frac{1}{h} \biggl(1-\frac{|x|}{h} \biggr)_{+}, \\ \widetilde{\varLambda}_{1,h}(x) & =\widetilde{\phi}_h(x)=\sum_{j\in\mathbb {Z}}\phi_{h}(x+2\pi j) = \frac{1}{2\pi}\sum_{j\in\mathbb{Z}}\operatorname{sinc}^2({j}h/2) \exp(ijx). \end{aligned}$$

From this and from (2.7), we obtain

$$\begin{aligned} \|\widetilde{\varLambda}_{1,h}\|_{L(\mathbb{T})} &=\|\varLambda_{1,h}\|_{L(\mathbb{R})}=1, \\ W_{2}(f,h)&=\|f-f \circledast\widetilde{\varLambda}_{1,h}\|\le \bigl(1+\|\widetilde{\varLambda}_{1,h}\|_{L(\mathbb{T})} \bigr)\|f\|=2\|f\|, \\ W_{2}(f,h)&\le2\|f\|\quad\mbox{for}\ h>0. \end{aligned}$$

Hence, Lemma 1 in the case k=1 is proved.

Let \(k\in\mathbb{N}\), k≥2. It is sufficient to consider the case h=1. In this case, Λ k :=Λ k,1 is an even, piecewise linear function (see Fig. 1) with vertices at the points (i,b i,k ), i=−k,…,k, where

$$b_{-i,k}=b_{i,k}, \quad i=0,\dots, k-1,\qquad b_{-k,k}=b_{k,k}=0, $$

and

$$b_{i,k}=2{\binom{2k}{k}}^{-1}\sum _{j=i+1}^k\binom{2k}{k-j}(-1)^{j+1}\frac{1}{j} \biggl(1-\frac{i}{j} \biggr), \quad i=0,\dots,k-1. $$
Fig. 1
figure 1

Function Λ 3(x)

The inequalities (see Appendix, Lemma A)

$$ \begin{aligned} & (-1)^ib_{i,k}>0,\qquad |b_{i,k}|>|b_{i+1,k}|, \qquad \sum_{j=0}^{k}|b_{j,k}|<2, \quad i=0,\ldots,k-1, \end{aligned} $$

imply (see (3.8), (3.10), and (2.2)) that

$$\begin{aligned} W_{2k}(f,h) & =\|f-f \circledast\widetilde{\varLambda}_{k,h}\|\le \bigl(1+\|\widetilde{\varLambda}_{k,h}\|_{L(\mathbb{T})} \bigr)\|f\|, \\ \|\widetilde{\varLambda}_{k,h}\|_{L(\mathbb{T})} & \le \|{\varLambda}_{k,h}\| _{L(\mathbb{R})}= \int_{\mathbb{R}} \bigl|\varLambda_{k,h}(t)\bigr|\,dt<\sum_{j=0}^{k}|b_{j,k}|<2. \end{aligned}$$

Now Lemma 1 is completely proved. □

Remark 1

It is clear that the exact constant in Lemma 1 is equal to \(1 + \|{\varLambda}_{k,1}\|_{L(\mathbb{R})}\). We have the following estimates of \(n_{k}:=\|{\varLambda}_{k,1}\|_{L(\mathbb{R})}\) for small k≥2:

$$n_2=53/45 , \quad n_3 \approx1.26, \quad n_4 \approx1.31,\quad n_{10} \approx1.42,\quad n_{100} \approx1.58, \quad n_{500} \approx 1.63. $$

4 Bernstein–Nikolsky–Stechkin Inequality

The Bernstein–Nikolsky–Stechkin inequality [17] (see also [10, Theorem 3.5.3], [3, p. 131, (12.1)]) is the generalization of the classical Bernstein inequality for trigonometric polynomials

$$ \bigl\|{\tau^{(r)}}\bigr\|\le n^r\|\tau\|, \quad r\in \mathbb{N}, \ \tau\in T_{n}. $$
(4.1)

The Bernstein–Nikolsky–Stechkin inequality is given by

$$ \bigl\| \tau^{(r)} \bigr\| \le n^r \bigl(2\sin (nh/2) \bigr)^{-r}\bigl\|\varDelta _h^r\tau\bigr\|, \quad h \in(0, 2\pi/n), $$
(4.2)

where

$${\varDelta }_h^rf(x):=\sum_{j=0}^r(-1)^j\binom{r}{j}f(x+jh-rh/2). $$

Note that in the case r=1, h=π/n, the inequality (4.2) was proved by M. Riesz [12, §4] in 1914.

Let e j (x):=exp(ijx), c j (x):=cos(jx). It is easily seen that

$$W_{2k}(e_j,x,h)=\lambda_{h,k}(j)e_j(x), \qquad W_{2k}(c_j,x,h)= \lambda_{h,k}(j) c_j(x),\quad j\in\mathbb{Z}, $$

where

$$\lambda_{h,k}(j)=W_{2k}(c_j,h)= \frac{2^{2k}}{\binom{2k}{k}}\,\int_{{\mathbb{R}}} \biggl(\sin\frac{{j}u}{2} \biggr)^{2k}\,\phi_h(u)\,du. $$

Lemma 2

For α∈(1,2], we have the following inequality:

$$ W_{2k}(c_n, \alpha\pi/n) \ge \frac{4 (\alpha- 1)}{\alpha^2}. $$
(4.3)

For α=2, we have in (4.3) equality.

Proof

$$\begin{aligned} W_{2k}(c_n, \alpha\pi/n) & = 2 \, 2^{2k}{\binom{2k}{k}}^{-1} \int_0^{\pi \alpha/n} \sin^{2k} (nt/2) \frac{n}{\alpha\pi} \biggl( 1 - \frac{n}{\alpha\pi} t \biggr) \, dt \\ & = 2 \, 2^{2k}{\binom{2k}{k}}^{-1} \frac{2}{\alpha\pi} \int_0^{\pi \alpha/2} \sin^{2k}(u) \biggl(1 - \frac{2}{\pi\alpha} u \biggr) \, du \\ & = 2 \, 2^{2k}{\binom{2k}{k}}^{-1} \frac{2}{\alpha \pi} I. \end{aligned}$$

Set s:=πα/2. We have

$$\begin{aligned} I =& \int_0^{\pi/2} + \int_{\pi/2}^{s} = I_1 + I_2 \\ =& \int_0^{\pi/2} (\cos t)^{2k} \biggl( \frac{s+t-\pi/2}{s} \biggr) \, dt + \int_0^{s-\pi/2} ( \cos t)^{2k} \biggl( \frac{s-t-\pi/2}{s} \biggr) \, dt \\ =& \frac{1}{s} \int_{s-\pi/2}^{\pi/2} (\cos t)^{2k} t \, dt + \frac{s-\pi/2}{s} \biggl[ \int_0^{\pi/2} \cos^{2k}(t) \, dt + \int_0^{s- \pi/2}\cos^{2k} (t) \, dt \biggr] \\ =& \int_{s-\pi/2}^{\pi/2} (\cos t)^{2k} \biggl( \frac{t}{s} -\frac {s-\pi/2}{s} \biggr) \,dt + 2 \frac{s-\pi/2}{s} \int _0^{\pi/2} \cos^{2k}(t) \, dt \\ \ge& 2 \frac{s-\pi/2}{s} \int_0^{\pi/2} \cos^{2k}(t) \, dt = \frac{\alpha-1}{\alpha}2^{-2k} \, \binom{2k}{k} \pi. \end{aligned}$$

 □

The main result in this section is the following analog of the Bernstein–Nikolsky–Stechkin inequality.

Theorem 1

If τT n , \(k,n\in\mathbb{N}\), then

$$ \bigl\|\tau^{(2k)}\bigr\|\le\frac{n^{2k}}{W_{2k}(c_n,h)}W_{2k}(\tau, h), \quad h \in(0,2\pi/n]. $$
(4.4)

In particular,

$$ \bigl\| {\tau^{(2k)}} \bigr\| \le \frac{\alpha^2}{4(\alpha-1)} n^{2k} W_{2k}(\tau,\alpha\pi/n) ,\quad \alpha\in(1,2]. $$

It is clear that Theorem 1 is sharp. We have the equality in (4.4) for τ=c n .

Theorem 1 implies Bernstein’s inequality (4.1) for even derivatives. This follows from Lemma 3.

Lemma 3

If τT n , \(k,n\in\mathbb{N}\), then

$$ \frac{W_{2k}(\tau, h)}{W_{2k}(c_n,h)} \le\|\tau\|, \quad h \in \bigl(0,\pi/(2n) \bigr). $$

Proof of Theorem 1

Theorem 1 follows from Lemmas 4, 5 below. Specifically, if

$$\tau(x)=\sum_{j=-n}^n\widehat{\tau}_je_j(x), $$

then

$$W_{2k}(\tau,x,h)=\sum_{j=-n}^n \lambda_{h,k}(j)\widehat{\tau}_je_j(x) $$

and

$$\bigl \vert \tau^{(2k)}(x)\bigr \vert =\Biggl \vert \sum_{j=-n}^n j^{2k}\widehat{\tau}_j e_j(x)\Biggr \vert = \Biggl|\sum_{\substack{j=-n\\ j\ne0}}^n j^{2k}\lambda_{h,k}^{-1}(j) \lambda_{h,k}(j)\widehat{\tau}_j\,e_j(x) \Biggr|. $$

Now Lemmas 4 and 5 imply that

$$\bigl\|\tau^{(2k)}\bigr\|\le n^{2k}{\lambda_{h,k}^{-1}(n)} \Biggl\|\sum_{j=-n}^n\lambda_{h,k}(j) \widehat{\tau}_je_j \Biggr\| =n^{2k}W^{-1}_{2k}(c_n,h) \bigl\|W_{2k}(\tau,\cdot,h)\bigr\|. $$

 □

Lemma 4

(cf. [19, p. 361])

Suppose that q(t) is a nonnegative, even, convex on [−n,n] function. Then for real \(\tau(t)=\sum_{j=-n}^{n}\widehat{\tau}_{j}e_{j}(t)\), the following inequality is valid:

$$\Biggl\|\sum_{j=-n}^n q(j)\widehat{\tau}_je_j \Biggr\|\le{q(n)}\|\tau\|. $$

Lemma 5

Let \(n,k\in\mathbb{N}\), h∈(0,2π/n]. Then the function \(q(t):=t^{2k}\lambda^{-1}_{h,k}(t)\) satisfies the conditions of Lemma 4.

Proof

We have the following formula:

$$\lambda_{h,k}(j)= \frac{2^{2k}}{\binom{2k}{k}}\int_{{\mathbb{R}}} \biggl(\sin\frac{{j}u}{2} \biggr)^{2k}\phi_h(u)\,du, $$

where (see (2.5))

$${\phi_h}(u):=\chi_h^{2*}(u)\ge0, \quad {\phi}_h(-u) = {\phi}_h(u), \quad \int_{{\mathbb{R}}} {\phi}_h(u) =1,\quad \operatorname{supp} \phi_h(u)= [-h, h]. $$

The function t 2k/sin2k(tu/2) satisfies the conditions of Lemma 4. In other words,

$$\bigl(t^{2k}/{\sin^{2k}}(tu/2) \bigr)^{\prime\prime}_{tt} > 0, \qquad|u|<h\le2\pi /n,\quad t\in(0, n]. $$

We need to prove the inequality

$$ \biggl( \frac{ t^{2k}}{ \int_{{\mathbb{R}}}\sin^{2k} {(tu/2)}\phi _h(u)\,du} \biggr)^{\prime\prime}_{tt} >0. $$
(4.5)

Let

$$f(t):=t^{2k},\qquad g_u(t):=\sin^{2k}(tu/2). $$

Then the function

$$f(t)/g_u(t) $$

is convex on (0,n]. We are going to prove that for 0<h≤2π/n, the function

$$m_h(t):= \frac{t^{2k}}{\int_{{\mathbb{R}}}\sin^{2k}(tu/2)\phi_h(u)\,du} =\frac{f(t)}{\int_{\mathbb{R}}g_u(t)\,\phi_h(u)\,du} $$

is convex on (0,n].

The properties

$$f(t)/g_u(t)>0,\qquad \bigl(f(t)/g_u(t)\bigr)'_t= \bigl(f'(t)g_u(t)-f(t)g'_u(t)\bigr)/g_u^2(t)>0, $$

imply that

$$\begin{aligned} & m_h(t)= \frac{\int_{{\mathbb{R}}} f(t) {\phi_h}(u) \, du}{\int_{{\mathbb{R}}} g_u(t) {\phi_h}(u) \, du}>0 \quad\mbox{and} \\ & \frac{d}{dt}m_h(t)= \frac{\int_{{\mathbb{R}}} (f'(t)g_u(t)-f(t)g'_u(t) )\phi_h(u)\,du}{ (\int_{\mathbb{R}} g_s(t){\phi_h(s)}\,ds )^2}>0. \end{aligned}$$

The condition of positivity for the second derivative takes the following form:

$$\int_{\mathbb{R}}\int_{\mathbb{R}} { \bigl( \bigl(f''g_u-fg''_u \bigr)g_s-2g'_s\bigl(f'g_u-fg'_u \bigr) \bigr)}{\phi_h}(u){\phi _h}(s)\,du\,ds>0, \quad t\in(0,n]. $$

Consider the function

$$F(t,k,u,s):= \bigl(f''g_u - f g''_u\bigr)g_s -2g'_s\bigl(f'g_u - fg'_u\bigr) = F_1(t,k,u,s) \cdot F_2 (t,k,u,s), $$

where

$$\begin{aligned} F_1(t,k,u,s) & :=(k/2)t^{2k-2}\sin^{2k-2}(tu/2) \sin^{2k-2}(ts/2), \\ F_2(t,k,u,s)& :=\sin^2(ts/2) \bigl(4(2k-1) \sin^2(tu/2)+u^2 t^2-2ku^2 t^2\cos^2(tu/2) \bigr) \\ &\phantom{:=} {}+4kts\sin(ts/2)\cos(ts/2)\sin(tu/2) \bigl(tu\cos(tu/2)-2\sin(tu/2) \bigr). \end{aligned}$$

Let

$$u:=u_t=tu/2, \qquad s:=s_t = ts/2. $$

After the change of variable, we may assume that u,s∈(0,h], h∈(0,π].

Consider the case k≥2. First, reduce the value of F 2 by omitting the positive quantity t 2 u 2−4sin2(tu/2). Then, let

$$\begin{aligned} F_1(k,u,s) & :=\sin^{2k-2}(u) \sin^{2k-2}(s), \\ F_2(u,s)&:= \sin^2 s\bigl(\sin^2 u-u^2\cos^2u\bigr)+2s\sin s\sin {u}\cos s(u\cos u-\sin u). \end{aligned}$$

To get (4.5) for k≥2, it is sufficient to show that

$$ \int_{{\mathbb{R}}_+^2}F_1(k,u,s)F_2(u,s) \phi_h(u)\phi_h(s)\,du\,ds>0,\quad 0< h\le\pi. $$
(4.6)

It is sufficient to prove (4.6) for the symmetric function \(F_{2}^{*}\) defined by

$$F_2^{*}(u,s):= F_2 (u,s) + F_2 (s,u) =2\sin s\sin u\varphi(s)\varphi(u)- \bigl(\sin s\varphi(u)-\sin u\varphi(s) \bigr)^2, $$

where

$$\varphi(u):=\sin u-u\cos u. $$

To prove (4.6), it is sufficient to prove positivity of the following one-dimensional integral:

$$\int_{\substack{s+u=a \\ s,u\in(0,h]}} \sin^{2k-2}(u)\sin^{2k-2}(s) F_2^*(u,s){\phi_h(u)\phi_h(s)}\, du>0, \quad 0<a<2h \le2 \pi. $$

The function φ(u)/sin(u) is increasing, and the function φ(au)/sin(au) is decreasing on the interval (max(0,aπ),a/2). Consequently, the function

$$\varPhi_a(u):=\frac{\varphi(u)}{\sin(u)}\cdot\frac{\sin(a-u)}{\varphi(a-u)} $$

is increasing on (max(0,aπ),a/2) from 0 to 1, and the function

$$F_2^*(u,a-u) =-{\sin^2}\, u\varphi^2(a-u) \bigl(\varPhi_a(u)-(2-\sqrt{3}) \bigr) \bigl(\varPhi_a(u)-(2+ \sqrt{3}) \bigr) $$

has exactly one zero on the interval (max(0,aπ),a/2). The functions \(\sin(u) \sin(a-u)\), ϕ h (u)ϕ h (au) are increasing and positive on (max(0,aπ),a/2). These facts and the inequality \(F_{2}^{*}(a/2,a/2)>0\) imply that it is sufficient to consider only the case k=2 and to prove that the following integral is positive:

$$\begin{aligned} I_h(a) :=&\int_{\substack{s+u=a \\ s,u\in(0,h]}}\sin^2(u)\sin ^2(s)F_2^*(u,s)\,du \\ =&2\int_{\max(0,a-h)}^{a/2}\sin^2(u) \sin^2(a-u)F_2^*(u,a-u)\,du>0,\quad 0<a<2h\le2\pi. \end{aligned}$$

Furthermore, it is sufficient to prove that I(a):=I π (a)>0 (0<a<2π). The proof of this inequality can be found in the Appendix (see Sect. A.2), where a special simple case k=1 is also considered. □

In the proof of Lemma 3, we will use the following Lemma 6.

Lemma 6

Let \(n,k\in\mathbb{N}\), h∈(0,π/(2n)). Then the function q(t):=λ h,k (t) satisfies the conditions of Lemma 4.

Proof of Lemma 6

This follows from the formula

$$\biggl( \biggl( \sin\frac{{t}u}{2} \biggr)^{2k} \biggr)^{\prime\prime}_{tt} = \frac{1}{2} {\frac{ ( \sin ( tu/2 ) ) ^{2k}k{u} ^{2} ( 2k ( \cos ( tu/2 ) ) ^{2}-1 ) }{1 - ( \cos ( tu/2 ) ) ^{2}}} > 0, \quad 0 < t u < \pi/2. $$

 □

Proof of Lemma 3

Lemma 3 follows from Lemmas 4 and 6. For

$$\tau(x)=\sum_{j=-n}^n\widehat{\tau}_j e_j(x), $$

we have

$$W_{2k}(\tau,x,h)=\sum_{j=-n}^n \lambda_{h,k}(j)\widehat{\tau}_je_j(x), $$

and Lemmas 4 and 6 imply that

$$\Biggl\|\sum_{j=-n}^n\lambda_{h,k}(j) \widehat{\tau}_je_j \Biggr\| \le{\lambda_{h,k}(n)}\|\tau\|. $$

 □

5 Jackson–Stechkin Theorem

5.1 Jackson–Stechkin Inequality for Polynomial Approximation

In 1936, Jean Favard [6, 7] proved that the following Euler–MacLaurin formula for smooth 2π-periodic functions g with \(\widehat{g}_{0}=0\):

$$ g(x)=\bigl(g^{(r)} \circledast B_r\bigr)(x), \qquad B_r(x):=\frac{1}{2\pi}\sum_{j\in\mathbb{Z},\ j\neq0}\frac{\exp (ijx)}{(ij)^r},\qquad i^2=-1, $$
(5.1)

gives a simple proof of the Bohr–Favard inequality (generalization of H. Bohr result [1], r=1). He used in [8] equality (5.1) to obtain a famous sharp inequality:

$$E_{n-1}(f):=\inf_{\tau\in T_{n-1}}\|f-\tau\|\le\frac{\mathcal{K}_r}{n^{r}}\bigl\|{ f^{(r)}} \bigr\|, \qquad \mathcal{K}_{r}:=\frac{4}{\pi}\sum_{j=-\infty}^\infty\frac{1}{(4j+1)^{r+1}}\le\frac{\pi}{2}. $$

In the present paper, the following “telescoping identity” by C. Neumann [11] (see also [13, p. 146], [14, (III,2;96)]) will be used. For every \(f\in L(\mathbb{T})\) and m=2,3,… we have

$$ f=f-f\circledast\widetilde{\varLambda}_{k,h}+\sum _{j=1}^{m-1}\widetilde {\varLambda}^{j\,\circledast}_{k,h} \circledast (f-f\circledast\widetilde{\varLambda}_{k,h} ) +f\circledast \widetilde{\varLambda}^{m\,\circledast}_{k,h}. $$
(5.2)

This equality gives a simple proof with new almost optimal constants of the following Jackson–Stechkin type theorem (see [9]).

Theorem 2

Let \(f\in C(\mathbb{T})\) and α>1, \(k,n\in\mathbb{N}\). Then

$$E_{n-1}(f) \le \biggl(\sec\frac{\pi}{2\alpha} \biggr)W_{2k} \biggl(f,\frac{\alpha\pi}{n} \biggr) . $$

Proof

For arbitrary \(f\in{C(\mathbb{T})}\), the representation (5.2) is valid. Using a subadditive property for E n−1(f), we obtain

$$\begin{aligned} E_{n-1}(f) \le& E_{n-1}(f-f \circledast\widetilde{\varLambda}_{k,h}) +\sum _{j=1}^{m-1}E_{n-1} \bigl(\widetilde{ \varLambda}^{j\,\circledast}_{k,h} \circledast (f-f\circledast\widetilde{ \varLambda}_{k,h} ) \bigr) \\ &{} +E_{n-1} \bigl(f\circledast\widetilde{ \varLambda}^{m\,\circledast }_{k,h} \bigr) \\ \le&\|f-f\circledast\widetilde{\varLambda}_{k,h}\| +\sum _{j=1}^{m-1}E_{n-1}\bigl(\widetilde{ \varLambda}^{j\,\circledast }_{k,h}\bigr)_{L(\mathbb{T})} \|f-f\circledast \widetilde{\varLambda}_{k,h}\| \\ &{} +E_{n-1}\bigl(\widetilde{ \varLambda}^{m\,\circledast}_{k,h}\bigr)_{L(\mathbb{T})}\| f\| \\ =& \Biggl(1+\sum_{j=1}^{m-1}E_{n-1} \bigl(\widetilde{\varLambda}^{j\,\circledast }_{k,h}\bigr)_{L(\mathbb{T})} \Biggr) \|f-f\circledast\widetilde{\varLambda}_{k,h}\| +E_{n-1} \bigl(\widetilde{\varLambda}^{m\,\circledast}_{k,h}\bigr)_{L(\mathbb{T})}\| f \|, \end{aligned}$$

where

$$E_{n-1}(g)_{L(\mathbb{T})}:=\inf_{\tau\in T_{n-1}}\|g-\tau \|_{L(\mathbb{T})}. $$

So

$$E_{n-1}(f)\le \Biggl(1+\sum_{j=1}^{m-1}E_{n-1} \bigl(\widetilde{\varLambda}^{j\,\circledast }_{k,h}\bigr)_{L(\mathbb{T})} \Biggr) \|f-f\circledast\widetilde{\varLambda}_{k,h}\|+E_{n-1} \bigl(\widetilde{\varLambda }^{m\,\circledast}_{k,h}\bigr)_{L(\mathbb{T})}\|f \|. $$

Therefore, it is sufficient to estimate the best L-approximation of the smooth functions \(\widetilde{\varLambda}_{k,h}^{j\,\circledast}\). This was done in [9]. Specifically, Lemma 4.2 from [9] contains the result, which reads (in our notation) as follows:

$$ E_{n-1}\bigl(\widetilde{\varLambda}_{k,h}^{j\,\circledast} \bigr)_{L(\mathbb{T})}= \sup_{g\in{T^{\perp}_{n-1}},\,g\not\equiv0}\frac{\|\widetilde{\varLambda }_{k,h}^{j\,\circledast}{\circledast}g\|}{\|g\|} =\sup _{g\in{T^{\perp}_{n-1}},\,g\not\equiv0}\frac{\|{\varLambda}_{k,h}^{j\, *}{*}g\|}{\|g\|}\le{\mathcal{K}}_{2j} \biggl( \frac{\mu\pi}{nh} \biggr)^{2j}, $$
(5.3)

where \(T^{\perp}_{n-1}\) is the subspace of all functions from \(C(\mathbb {T})\) that are orthogonal to T n−1,

$$\mu^2:=\mu^2_{2k}:=\frac{8}{\pi^2}\sum_{\mathrm{odd}\,l}^{k}\frac{a_l}{l^2}<1, $$

and the numbers a l =a l (k), l=1,…,k, are defined by (3.4).

The inequality (5.3) implies that

$$E_{n-1}\bigl(\widetilde{\varLambda}_{k,h}^{j\,\circledast}\bigr)_{L(\mathbb{T})} \le{ \mathcal{K}}_{2j} \biggl(\frac{\pi\mu}{n h} \biggr)^{2j}={ \mathcal {K}}_{2j}\alpha^{-2j}\mu^{2j} <{ \mathcal{K}}_{2j}\alpha^{-2j}. $$

Since α>1 and \({\mathcal{K}}_{2j}\le{4/\pi}\), for \(f\in {C(\mathbb{T})}\) we have the following:

$$E_{n-1}\bigl(\widetilde{\varLambda}^{j\,\circledast}_{k,h} \bigr)_{L(\mathbb{T})}\|f\| \le{\mathcal{K}}_{2j}\alpha^{-2j} \|f\|\to0\quad\mbox{for}\ j\to \infty, $$

and

$$ E_{n-1}(f) \le \Biggl(1+\sum_{j=1}^\infty{\mathcal{K}}_{2j}\alpha^{-2j}\mu ^{2j} \Biggr) W_{2k}(f,h) = \biggl(\sec\frac{\mu\pi}{2\alpha} \biggr)W_{2k} \biggl(f,\frac{\alpha\pi}{n} \biggr). $$

Here, we use the well-known expansion for the secant function (cf. [5, pp. 561–562, (6), (8)]). □

5.2 Favard-Type Operators

Consider a family \(F:=\{F_{n,k}:\; n,k\in\mathbb{N}\}\) of operators

$$ F_{n,k}{:}\ C^{2k}(\mathbb{T})\mapsto{C( \mathbb{T})}, $$

with the properties

$$ \bigl\|g-F_{n,k}(g)\bigr\|\le C_F n^{-2k} \bigl\|{g^{(2k)}} \bigr\|, \quad g\in C^{2k}(\mathbb{T}), $$

where the constant 0<C F <∞ does not depend on g, kn. We will call F n,k F a Favard-type operator.

Theorem 3

Let \(f\in{C(\mathbb{T})}\). If F n,k is a Favard-type operator and τ T n−1 is the best uniform approximation of f, then

$$ \bigl\|f-F_{n,k}(\tau_*)\bigr\|\le \varOmega_\alpha(C_F) W_{2k} \biggl(f,\frac{\alpha\pi}{n} \biggr), \quad \alpha\in(1,2], $$

with

$$\varOmega_\alpha(C_F)= \sec\frac{\pi}{2\alpha} + \biggl(1+3\sec\frac{\pi}{2\alpha}\biggr) \frac{C_F \alpha^2}{4(\alpha-1)}. $$

Proof

Suppose that

$$E_{n-1}(f)=\|f-\tau_*\|,\qquad h_\alpha:=\frac{\alpha\pi}{n},\quad \alpha\in(1,2], $$

and let

$$M_{\alpha}:=\frac{C_F \alpha^2}{4(\alpha-1)}. $$

Theorem 1 and Lemma 1 imply that

$$\begin{aligned} \bigl\|\tau_*-F_{n,k}(\tau_*)\bigr\| &\le C_F n^{-2k}\bigl\|\tau_*^{(2k)}\bigr\| \le M_{\alpha}W_{2k}(\tau_*,h_\alpha) \\ &\le M_{\alpha} \bigl\{W_{2k}(f-\tau_*,h_\alpha)+W_{2k}(f,h_\alpha) \bigr\} \\ &\le M_{\alpha} \bigl\{3\|f-\tau_*\|+W_{2k}(f,h_\alpha) \bigr\}. \end{aligned} $$

Thus,

$$\bigl\|f-F_{n,k}(\tau_*)\bigr\|\le\|f-\tau_*\|+\bigl\|\tau_*-F_{n,k}(\tau_*)\bigr\| \le\varOmega_\alpha(C_F)W_{2k}(f, h_\alpha). $$

 □

5.3 Approximation by Periodic Splines

We say that \(s\in\mathcal{S}\equiv\mathcal{S}_{2n,2k-1}\) if \(s^{(2k-2)} \in C(\mathbb{T})\) and s (2k−2)(x)=s j =const for xΔ j :=[2πj/(2n),2π(j+1)/(2n)), j=0,…,2n−1.

The space \(\mathcal{S}\) is the space of smooth periodic splines of degree 2k−1 with minimal defects (=1) on the uniform partition of \(\mathbb{T}=\bigcup_{j=0}^{2n-1}\varDelta _{j}\). Define the operator of interpolation at the endpoints of Δ j :

$$ { } I_{n,k}(g)\in\mathcal{S},\qquad I_{n,k}(g) (x_j)=g(x_j),\quad x_j=j\pi /n,\ j=0,1, \dots,2n-1. $$

V.M. Tihomirov [18] (see also [10, Theorem 5.2.6, p. 223]) proved that I n,k is an operator of Favard type:

$$\bigl\|g-I_{n,k}(g)\bigr\|\le\mathcal{K}_{2k}n^{-2k} \bigl\|{g^{(2k)}}\bigr\| \le(4/{\pi}) {n^{-2k}} \bigl\|{g^{(2k)}}\bigr\|, \quad n,k\in\mathbb{N}. $$

Therefore, we obtain the following Jackson–Stechkin theorem for periodic splines.

Theorem 4

For \(f\in{C(\mathbb{T})}\), α>1, \(n,k\in\mathbb{N}\),

$$\bigl\|f-{I}_{n,k}(\tau_*)\bigr\|\le\varOmega_\alpha^*(4/\pi) W_{2k}^* \biggl(f,\frac{\alpha\pi}{n} \biggr), $$

where

$$\varOmega_\alpha^* ({4}/{\pi} ):= \begin{cases} \varOmega_\alpha ({4}/{\pi} ), & \alpha\in(1,2],\\ \varOmega_2 ({4}/{\pi} ), & \alpha\in(2,\infty). \end{cases} $$

5.4 Two Results for the Classical Modulus of Continuity ω r

First, we improve the main result from [9] (see [9, Theorem 2.1]).

Theorem 5

For \(f\in{C(\mathbb{T})}\), \(n, r\in \mathbb{N}\), α>1,

$$E_{n-1}(f):=\inf_{\tau\in T_{n-1}}\|f-\tau\| \le\sec\bigl( \pi/(2\alpha)\bigr)\gamma_{r}^*\omega_r(f,\alpha\pi/n), $$

with

$$\gamma_r^*=\frac{1}{{r\choose\lfloor\frac{r}{2}\rfloor}}\asymp\frac {r^{1/2}}{2^r}. $$

In particular,

$$c_r\gamma_{r}^* \le \sup_{f\in C} \frac{E_{n-1}(f)}{\omega_{r}(f,\frac{2\pi}{n})} \le \sqrt{2} \gamma_{r}^*, $$

where

$$c_r = \left \{ \begin{array}{l@{\quad}l} 1 - \frac{1}{r+1}, & r = 2k-1; \\ 1, & r = 2k; \end{array} \right . \quad n>2r. $$

Proof

The proof follows from Theorem 1, keeping in mind the inequalities

$$W_{2k}(f,h)\le\gamma_{2k}^*\omega_{2k}(f, h),\quad \gamma_{2k}^*\omega_{2k}(f,h) \le\gamma_{2k-1}^* \omega_{2k-1}(f,h) $$

and the lower estimate from [9, Sect. 8, Theorem 8.2]. □

Now, let us rewrite Theorem 4 in standard form:

Theorem 6

For \(f\in {C(\mathbb{T})}\), \(n,k\in\mathbb{N}\), r∈{2k−1,2k}, α>1,

$$ { } E_{2n,2k-1}^S(f):=\inf_{s\in\mathcal{S}_{2n,2k-1}} \|f-s\| \le\varOmega_\alpha^* (4/\pi) \gamma_{r}^* \omega_r \biggl(f,\frac{\alpha\pi}{n} \biggr). $$
(5.4)

Note that Lemma 8.1 and Theorem 8.2 from [9] provide the lower estimate for the constants in (5.4) equal to \(c_{r}\gamma_{r}^{*}\). Therefore, the estimate (5.4) is asymptotically sharp. For example, for α=2,

$$\biggl(1-\frac{1}{r+1} \biggr)\gamma_{r}^* \le \sup_{f\in{ C(\mathbb{T})}}\frac{E_{2n, 2k-1}^S (f)}{\omega_{r}(f,\frac{2\pi}{n})} \le 8.1 \gamma_{r}^*, \quad r\in\{2k-1,2k\}, \ 3r< 2n. $$