Skip to main content

Advertisement

Log in

Sharp Remez-Type Inequalities for Differentiable Periodic Functions, Polynomials, and Splines

  • Published:
Ukrainian Mathematical Journal Aims and scope

For any \( \omega \) > 0, β \( \epsilon \) (0, 2\( \omega \)), and any measurable set B \( \epsilon \) I d := [0,d], μB = β, we obtain the following sharp inequality of the Remez type:

on the classes S φ (ω) of functions x with minimal period d(d ≥ 2ω) and a given sine-shaped 2\( \omega \)-periodic comparison function '. In particular, we prove sharp Remez-type inequalities on the Sobolev classes of differentiable periodic functions. We also obtain inequalities of the indicated type in the spaces of trigonometric polynomials and polynomial splines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Remes, “Sur une propriété extrémale des polynomes de Tchebychef,” Zap. Nauk.-Doslid. Inst. Mat. Mekh. Kharkov. Mat. Tov., Ser. 4, 13, Issue 1, 93–95 (1936).

  2. M. I. Ganzburg, “On a Remez-type inequality for trigonometric polynomials,” J. Approxim. Theory, 164, 1233–1237 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  3. E. Nursultanov and S. Tikhonov, “A sharp Remez inequality for trigonometric polynomials,” Constr. Approxim., 38, 101–132 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Borwein and T. Erdelyi, Polynomials and Polynomial Inequalities, Springer, New York (1995).

    Book  MATH  Google Scholar 

  5. M. I. Ganzburg, “Polynomial inequalities on measurable sets and their applications,” Constr. Approxim., 17, 275–306 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  6. B. Bojanov and N. Naidenov, “An extension of the Landau–Kolmogorov inequality. Solution of a problem of Erdos,” J. Anal. Math., 78, 263–280 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  7. V. A. Kofanov, “Sharp upper bounds for the norms of functions and their derivatives in the classes of functions with given comparison function,” Ukr. Mat. Zh., 63, No. 7, 969–984 (2011); English translation: Ukr. Math. J., 63, No. 7, 1118–1135 (2011).

  8. A. N. Kolmogorov, “On the inequalities between the upper bounds of successive derivatives on an infinite interval,” in: Selected Works, Mathematics and Mechanics [in Russian], Nauka, Moscow (1985), pp. 252–263.

  9. A. A. Ligun, “Inequalities for upper bounds of functionals,” Anal. Math., 2, No. 1, 11–40 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  10. N. P. Korneichuk, V. F. Babenko, V. A. Kofanov, and S. A. Pichugov, Inequalities for the Derivatives and Their Applications [in Russian], Naukova Dumka, Kiev (2003).

    Google Scholar 

  11. A. Zygmund, Trigonometric Series [Russian translation], Vol. 2, Mir, Moscow (1965).

  12. A. P. Calderon and G. Klein, “On an extremum problem concerning trigonometrical polynomials,” Stud. Math., 12, 166–169 (1951).

    MathSciNet  MATH  Google Scholar 

  13. L. V. Taikov, “One generalization of the Bernstein inequality,” Tr. Mat. Inst. Akad. Nauk SSSR, 78, 43–47 (1965).

    MathSciNet  MATH  Google Scholar 

  14. V. M. Tikhomirov, “Widths of the sets in functional spaces and the theory of best approximations,” Usp. Mat. Nauk, 15, No. 3, 81–120 (1960).

    Google Scholar 

  15. A. A. Ligun, “Sharp inequalities for spline functions and the best quadrature formulas for some classes of functions,” Mat. Zametki, 19, No. 6, 913–926 (1976).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 68, No. 2, pp. 227–240, February, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kofanov, V.A. Sharp Remez-Type Inequalities for Differentiable Periodic Functions, Polynomials, and Splines. Ukr Math J 68, 253–268 (2016). https://doi.org/10.1007/s11253-016-1222-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-016-1222-5

Keywords

Navigation