Skip to main content
Log in

Entropy and Widths of Multiplier Operators on Two-Point Homogeneous Spaces

  • Published:
Constructive Approximation Aims and scope

Abstract

In this article we continue the development of methods of estimating n-widths and entropy of multiplier operators begun in 1992 by A. Kushpel (Fourier Series and Their Applications, pp. 49–53, 1992; Ukr. Math. J. 45(1):59–65, 1993). Our main aim is to give an unified treatment for a wide range of multiplier operators Λ on symmetric manifolds. Namely, we investigate entropy numbers and n-widths of decaying multiplier sequences of real numbers \(\varLambda=\{\lambda_{k}\}_{k=1}^{\infty}\), |λ 1|≥|λ 2|≥⋯, \(\varLambda:L_{p}(\mathbb{M}^{d}) \rightarrow L_{q}(\mathbb{M}^{d})\) on two-point homogeneous spaces \(\mathbb{M}^{d}\): \(\mathbb{S}^{d}\), ℙd(ℝ), ℙd(ℂ), ℙd(ℍ), ℙ16(Cay). In the first part of this article, general upper and lower bounds are established for entropy and n-widths of multiplier operators. In the second part, different applications of these results are presented. In particular, we show that these estimates are order sharp in various important situations. For example, sharp order estimates are found for function sets with finite and infinite smoothness. We show that in the case of finite smoothness (i.e., |λ k |≍k γ(lnk)−ζ, γ/d>1, ζ≥0, k→∞), we have \(e_{n}(\varLambda U_{p}(\mathbb{S}^{d}), L_{q}(\mathbb{S}^{d})) \ll d_{n}(\varLambda U_{p}(\mathbb{S}^{d}), L_{q}(\mathbb{S}^{d}))\), n→∞, but in the case of infinite smoothness (i.e., \(|\lambda_{k}| \asymp e^{-\gamma k^{r}}\), γ>0, 0<r≤1, k→∞), we have \(e_{n}(\varLambda U_{p}(\mathbb{S}^{d}), L_{q}(\mathbb{S}^{d})) \gg d_{n}(\varLambda U_{p}(\mathbb{S}^{d}), L_{q}(\mathbb{S}^{d}))\), n→∞ for different p and q, where \(U_{p}(\mathbb{S}^{d})\) denotes the closed unit ball of \(L_{p}(\mathbb{S}^{d})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birman, M.S., Solomyak, M.Z.: Piecewise polynomial approximations of functions of classes \(W^{\alpha}_{p}\). Mat. Sb. (N.S.) 73(115), 331–355 (1967)

    MathSciNet  Google Scholar 

  2. Bordin, B., Kushpel, A., Levesley, J., Tozoni, S.: n-Widths of multiplier operators on two-point homogeneous spaces. In: Chui, C., Schumaker, L.L. (eds.) Approximation Theory IX, vol. 1, Theoretical Aspects, pp. 23–30. Vanderbilt University Press, Nashville (1998)

    Google Scholar 

  3. Bordin, B., Kushpel, A., Levesley, J., Tozoni, S.: Estimates of n-widths of Sobolev’s classes on compact globally symmetric spaces of rank 1. J. Funct. Anal. 202, 307–326 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourgain, J., Lindenstrauss, J., Milman, V.: Approximation of zonoids by zonotopes. Acta Math. 162, 73–141 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carl, B.: Entropy numbers, s-numbers and eigenvalue problems. J. Funct. Anal. 41(3), 290–306 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cartan, E.: Sur la determination d’un systeme orthogonal complet dans un espace de Riemann symetrique clos. Rend. Circ. Mat. Palermo 53, 217–252 (1929)

    Article  Google Scholar 

  7. Edmunds, D.E., Triebel, H.: Entropy numbers and approximation numbers in function spaces. Proc. Lond. Math. Soc. 58(1), 137–152 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Edmunds, D.E., Triebel, H.: Function Spaces, Entropy Numbers, Differential Operators. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  9. Figiel, T., Lindenstrauss, J., Milman, V.D.: The dimension of almost spherical sections of convex bodies. Acta Math. 139(1), 53–94 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gangolli, R.: Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy’s Browian motion of several parameters. Ann. Inst. Henri Poincaré, Sect. B (N.S.) 3, 121–226 (1967)

    MathSciNet  MATH  Google Scholar 

  11. Helgason, S.: The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds. Acta Math. 113, 153–180 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  12. Helgason, S.: Differential Geometry and Symmetric Spaces. Academic Press, New York (1962)

    MATH  Google Scholar 

  13. Kahane, J.P.: Some Random Series of Functions. Heath Math. Monographs. Heath, Lexington (1968)

    MATH  Google Scholar 

  14. Kashin, B.S., Tzafriri, L.A.: Lower bound for the maximum of a stochastic process. Math. Notes - Ross. Akad., 56(6), 1306–1308 (1994)

    MathSciNet  MATH  Google Scholar 

  15. Koornwinder, T.: The addition formula for Jacobi polynomials and spherical harmonics. SIAM J. Appl. Math. 25(2), 236–246 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kushpel, A.: On an estimate of Levy means and medians of some distributions on a sphere. In: Fourier Series and Their Applications, pp. 49–53. Inst. of Math., Kiev (1992)

    Google Scholar 

  17. Kushpel, A.: Estimates of Bernstein’s widths and their analogs. Ukr. Math. J. 45(1), 59–65 (1993)

    MathSciNet  MATH  Google Scholar 

  18. Kushpel, A., Levesley, J., Wilderotter, K.: On the asymptotically optimal rate of approximation of multiplier operators from L p into L q . Constr. Approx. 14(2), 169–185 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kushpel, A.K.: Estimates of entropy numbers of multiplier operators with slowly decaying coefficients. In: 48th Seminário Brasileiro de Análise, Petrópolis, RJ, pp. 711–722 (1998)

    Google Scholar 

  20. Kushpel, A.: Levy means associated with two-point homogeneous spaces and applications. In: 49th Seminário Brasileiro de Análise, Campinas, SP, pp. 807–823 (1999)

    Google Scholar 

  21. Kushpel, A.: Estimates of n-widths and ϵ-entropy of Sobolev’s sets on compact globally symmetric spaces of rank 1. In: 50th Seminário Brasileiro de Análise, São Paulo, SP, pp. 53–66 (1999)

    Google Scholar 

  22. Kushpel, A.: n-Widths of Sobolev’s classes on compact globally symmetric spaces of rank 1. In: Kopotun, K., Lyche, T., Neamtu, M. (eds.) Trends in Approximation Theory, pp. 203–212. Vanderbilt University Press, Nashville (2001)

    Google Scholar 

  23. Kushpel, A., Tozoni, S.A.: Sharp orders of n-widths of Sobolev’s classes on compact globally symmetric spaces of rank 1. In: 54th Seminário Brasileiro de Análise, São José do Rio Preto, SP, pp. 293–303 (2001)

    Google Scholar 

  24. Kushpel, A., Tozoni, S.A.: On the problem of optimal reconstruction. J. Fourier Anal. Appl. 13(4), 459–475 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kwapień, S.: Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients. Stud. Math. 44, 583–595 (1972)

    MATH  Google Scholar 

  26. Morimoto, M.: Analytic Functionals on the Sphere. Translations of Mathematical Monographs, vol. 178. Am. Math. Soc., Providence (1998)

    MATH  Google Scholar 

  27. Pajor, A., Tomczak-Jaegermann, N.: Subspaces of small codimension of finite-dimensional Banach spaces. Proc. Am. Math. Soc. 97, 637–642 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pietsch, A.: Operator Ideals, North-Holland, Amsterdam (1980)

    MATH  Google Scholar 

  29. Pinkus, A.: n-Widths in Approximation Theory. Springer, Berlin, (1985)

    MATH  Google Scholar 

  30. Pisier, G.: The Volume of Convex Bodies and Banach Space Geometry. Cambridge University Press, London (1989)

    Book  MATH  Google Scholar 

  31. Schwartz, L.: Théorie des distributions, Vols. I, II. Hermann, Paris (1950/51)

    Google Scholar 

  32. Sobolev, S.L.: Introduction to the Theory of Cubature Formulas. Nauka, Moscow (1974)

    Google Scholar 

  33. Szegö, G.: Orthogonal Polynomials. Am. Math. Soc., New York (1939)

    Google Scholar 

  34. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. VEB/North-Holland, Berlin/Amsterdam (1978)

    Google Scholar 

  35. Triebel, H.: Theory of Function Spaces. Geest & Portig/Birkhäuser, Leipzig/Basel (1983)

    Book  Google Scholar 

  36. Triebel, H.: Theory of Function Spaces II. Birkhäuser, Basel (1992)

    Book  MATH  Google Scholar 

  37. Wang, H.C.: Two-point homogeneous spaces. Ann. Math. 55, 177–191 (1952)

    Article  MATH  Google Scholar 

Download references

Acknowledgement

A. Kushpel was supported in part by FAPESP/Brazil, Grant 03/10393-8 and 07/56162-8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Tozoni.

Additional information

Communicated by Allan Pinkus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kushpel, A., Tozoni, S.A. Entropy and Widths of Multiplier Operators on Two-Point Homogeneous Spaces. Constr Approx 35, 137–180 (2012). https://doi.org/10.1007/s00365-011-9146-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-011-9146-7

Keywords

Mathematics Subject Classification (2000)

Navigation