Skip to main content
Log in

Management of inorganic elements by overwintering physiology of cold hardy larvae of European corn borer (Ostrinia nubilalis, Hbn.)

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The European corn borer (Ostrinia nubilalis, Hbn.), enters diapause, a strategy characterized by arrest of development and reproduction, reduction of metabolic rate and the emergence of increased resistance to challenging seasonal conditions as low sub-zero winter temperatures. The aim of this study was to investigate the potential role of inorganic elements in the ecophysiology of O. nubilalis, analysing their content in the whole body, hemolymph and fat body, both metabolically active, non-diapausing and overwintering diapausing larvae by ICP-OES spectrometer following the US EPA method 200.7:2001. O nubilalis as many phytophagous lepidopteran species maintain a very low extracellular sodium concentration and has potassium as dominant cation in hemolymph of their larvae. Changes in hemolymph and the whole body sodium content occur already at the onset of diapause (when the mean environmental temperatures are still high above 0 ºC) and remain stable during the time course of diapause when larvae of this species cope with sub-zero temperatures, it seems that sodium content regulation is rather a part of diapausing program than the direct effect of exposure to low temperatures. Compared to non-diapausing O. nubilalis larvae, potassium levels are much higher in the whole body and fat body of diapausing larvae and substantially increase approaching the end of diapause. The concentration of Ca, Mg, P and S differed in the whole body, hemolymph and fat body between non-diapausing and diapausing larvae without a unique trend during diapause, except an increase in their contents at the end of diapause.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Generated data supporting the findings of this study are available from the corresponding author E.V. on request.

References

  • Avramov M, Schád É, Révész Á, Turiák L, Uzelac I, Tantos Á, Drahos L, Popović ŽD (2022) Identification of intrinsically disordered proteins and regions in a non-model insect species Ostrinia nubilalis (Hbn). Biomolecules 12:592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bale JS (1996) Insect cold hardiness: a matter of life and death. Eur J Entomol 93:369–382

    Google Scholar 

  • Bale JS, Hayward SA (2010) Insect overwintering in a changing climate. J Exp Biol 213:980–994

    Article  CAS  PubMed  Google Scholar 

  • Ballan-Dufrançais C (2002) Localization of metals in cells of pterygote insects. Microsc Res Techn 56:403–420

    Article  Google Scholar 

  • Bayley JS, Winther CB, Andersen MK, Grønkjær C, Nielsen OB, Pedersen TH, Overgaard J (2018) Cold exposure causes cell death by depolarization-mediated Ca2+ overload in a chill-susceptible insect. Proc Natl Acad Sci U S A 115(41):E9737–E9744. https://doi.org/10.1073/pnas.1813532115

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Behmer ST (2008) Nutrition in insects. In: Capinera JL (ed) Encyclopedia of entomology. Springer Science & Business Media, pp 2646–2654

    Google Scholar 

  • Bennett VA, Pruitt NL, Lee RE (1997) Seasonal changes in fatty acid composition associated with cold-hardening in third instar larvae of Eurosta solidaginis. J Comp Physiol B 167:249–255

    Article  CAS  Google Scholar 

  • Blagojević DP, Grubor-Lajšić G (2000) Multifunctionality of antioxidant system in insects. Arch Biol Sci 52(4):185–194

    Google Scholar 

  • Block W (1991) To freeze or not to freeze? Invertebrate survival of sub-zero temperatures. Funct Ecol 5:284–290

    Article  Google Scholar 

  • Boardman L, Terblanche JS, Sinclair BJ (2011) Transmembrane ion distribution during recovery from freezing in the woolly bear caterpillar Pyrrharctia isabella (Lepidoptera: Arctiidae). J Insect Physiol 57:1154–1162

    Article  CAS  PubMed  Google Scholar 

  • Čelić TV, Vukašinović EL, Kojić D, Orčić S, Milić S, Vasin J, Purać J (2022) Exposure to high concentrations of cadmium which delay development of Ostrinia nubilalis Hbn. Larvae affected the balance of bioelements. Arch Environ Contam Toxicol 83:193–200

    Article  PubMed  Google Scholar 

  • Dahms UC (1995) Dormancy in the copepod-an overview. Hydrobiologia 306:199–211

    Article  Google Scholar 

  • Danks HV (1987) Insect dormancy: an ecological perspective. Biological Survey of Canada, Ottawa

    Google Scholar 

  • Denlinger DL, Lee RE (2010) Low temperature biology of insects. Cambridge University Press, p 390

    Book  Google Scholar 

  • Dissanayake P, Zachariassen KE (1980) Effect of warm acclimation on the cationic concentrations in the extracellular and intracellular body fluid of hibernating Rhagium inquisitor beetles. Comp Biochem Physiol 65A:347–350

    Article  CAS  Google Scholar 

  • Dow JA (2017) The essential roles of metal ions in insect homeostasis and physiology. Curr Opin Insect Sci 23:43–50

    Article  PubMed  Google Scholar 

  • Duman JG, Wu DW, Xu L, Tursman D (1991) Adaptation of insects to subzero temperatures. Quart Rev Biol 66(4):387–410

    Article  Google Scholar 

  • Findsen A, Andersen JL, Calderon S, Overgaard J (2013) Rapid cold hardening improves recovery of ion homeostsis and chill coma recovery time in the migratory locust, Locusta migratoria. J Exp Biol 216:1630–1637

    PubMed  Google Scholar 

  • Grubor-Lajsic G, Block W, Palanacki V, Glumac S (1991) Cold hardiness parameters of overwintering diapause larvae of Ostrinia nubilalis in Vojvodina, Yugoslavia. Cryo-Letters 12:177–182

    Google Scholar 

  • Grubor-Lajsic G, Block W, Worland R (1992) Comparison of the cold hardiness of two larval Lepidoptera (Noctuidae). Physiol Entomol 17:148–152

    Article  Google Scholar 

  • Harvey WR, Zerahn K (1971) Active transport of sodium by the isolated midgut of Hyalophora cecropia. J Exp Biol 54:269–274

    Article  CAS  PubMed  Google Scholar 

  • ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories, ISO/IEC 17025:2017 International Organization for Standardization

  • Jovanović-Galović A, Blagojević DP, Grubor-Lajšić G, Worland R, Spasić MB (2004) Role of antioxidant defense during different stages of the preadult life cycle in European corn borer (Ostrinia nubilalis, Hubn.): diapause and metamorphosis. Arch Insect Biochem Physiol 55:79–89

    Article  PubMed  Google Scholar 

  • Jovanovic-Galovic A, Blagojevic DP, Grubor-Lajsic G, Worland MR, Spasic MB (2007) Antioxidant defense in mitochondria during diapause and postdiapause development of European corn borer (Ostrinia nubilalis, Hbn.). Arch Insect Biochem Physiol 64:111–119

    Article  CAS  PubMed  Google Scholar 

  • Jungreis AM, Jatlow P, Wyatt GR (1973) Inorganic ion composition of haemolymph of the cecropia silkmoth: changes with diet and ontogeny. J Insect Physiol 19:225–233

    Article  CAS  PubMed  Google Scholar 

  • Kojić D, Popović ŽD, Orčić D, Purać J, Orčić S, Vukašinović EL, Nikolić TV, Blagojević DP (2018) The influence of low temperature and diapause phase on sugar and polyol content in the European corn borer Ostrinia nubilalis (Hbn). J Insect Physiol 109:107–113

    Article  PubMed  Google Scholar 

  • Koštál V (2006) Eco-physiological phases of insect diapause. J Insect Physiol 52:113–127

    Article  PubMed  Google Scholar 

  • Kostal V, Simek P (1995) Dynamics of cold hardiness, supercooling and cryoprotectants in diapause and non-diapause pupae of the cabbage root fly, Delia radicum L. J Insect Physiol 41:627–634

    Article  CAS  Google Scholar 

  • Kristiansen E, Zachariassen KE (2001) Effect of freezing on the transmembrane distribution of ions in freeze-tolerant larvae of the wood fly Xylophagus cinctus (Diptera, Xylophagidae). J Insect Physiol 47:585–592

    Article  CAS  PubMed  Google Scholar 

  • Layne JR Jr, Blakely DL (2002) Effect of freeze temperature on ice formation and long-term survival of the woolly bear caterpillar (Pyrrharctia isabella). J Insect Physiol 48:1133–1137

    Article  CAS  PubMed  Google Scholar 

  • Layne JR Jr, Peffer BJ (2006) The influence of freeze duration on postfreeze recovery by caterpillars of Pyrrharctia isabella (Lepidoptera: Arctiidae): when is survival enough to qualify as recovery? J Exp Zool 305A:570–575

    Article  Google Scholar 

  • Lindqvist L, Block M (1995) Excretion of cadmium during moulting and metamorphosis in Tenebrio molitor (Coleoptera; Tenebrionidae). Comp Biochem Phys C 111:325–328

    Google Scholar 

  • MacMillan HA, Andersen JL, Davies SA, Overgaard DJ (2015a) The capacity to maintain ion and water homeostasis underlies interspecific variation in Drosophila cold tolerance. Sci Report 5:18607

    Article  ADS  CAS  Google Scholar 

  • MacMillan HA, Andersen JL, Loeschcke V, Overgaard J (2015b) Sodium distribution predicts the chill tolerance of Drosophila melanogaster raised in different thermal conditions. Am J Physiol Regul Integr Comp Physiol 308:823–831

    Article  Google Scholar 

  • MacRae TH (2010) Gene expression, metabolic regulation and stress tolerance during diapause. Cell Mol Life Sci 67:2405–2424

    Article  CAS  PubMed  Google Scholar 

  • Merritt TJS, Bewick AJ (2017) Genetic diversity in insect metal tolerance. Front Genet 8:172. https://doi.org/10.3389/fgene.2017.00172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohr SE, Killilea DW (2018) Metal biology takes fight: the study of metal homeostasis and detoxification in insects. Front Genet 9:221

    Article  PubMed  PubMed Central  Google Scholar 

  • Overgaard J, MacMillan HA (2017) The integrative physiology of insect chill tolerance. Annu Rev Physiol. https://doi.org/10.1146/annurev-physiol-022516-034142

    Article  PubMed  Google Scholar 

  • Popović ŽD (2014) Molecular and biochemical basis of diapause of European corn borer Ostrinia nubilalis (Hbn.) (Lepidoptera: Pyralidae). Doctoral dissertation, University of Belgrade, Faculty of Biology

  • Popović ŽD, Subotić A, Nikolić TV, Radojičić R, Blagojević DP, Grubor-Lajšić G, Koštál V (2015) Expression of stress-related genes in diapause of European corn borer (Ostrinia nubilalis Hbn.). Comp Biochem Physiol B 186:1–7

    Article  PubMed  Google Scholar 

  • Popović ŽD, Maier V, Avramov M, Uzelac I, Gošić-Dondo S, Blagojević D, Koštál V (2021) Acclimations to cold and warm conditions differently affect the energy metabolism of diapausing larvae of the European Corn Borer Ostrinia nubilalis (Hbn). Front Physiol 12:2126

    Article  Google Scholar 

  • Purać J, Kojić D, Popović Ž, Vukašinović E, Tiziani S, Gunther U, Grubor-Lajšić G (2015) Metabolomic analysis of diapausing and non-diapausing larvae of the European Corn Borer Ostrinia nubilalis (Hbn.) (Lepidoptera: Crambidae). Acta Chim Slov 62:761–767

    PubMed  Google Scholar 

  • Ramlov H, Westh P (1993) Ice formation in the freeze tolerant alpine weta Hemideina maori hutton (Orthoptera; Stenopelmatidae). Cryo-Letters 14:169–176

    Google Scholar 

  • Salt RW (1961) Principles of insect cold hardiness. Annu Rev Entomol 31:55–74

    Article  Google Scholar 

  • Sinclair BJ (1999) Insect cold tolerance: how many kinds of frozen? Eur J Entomol 96:157–164

    Google Scholar 

  • Sømme L (1982) Supercooling and winter survival in terrestrial arthropods. Comp Biochem Physiol A 73:519–543

    Article  Google Scholar 

  • Stanic B, Jovanovic-Galovic A, Blagojevic DP, Grubor-Lajsic G, Worland R, Spasic MB (2004) Cold hardiness in Ostrinia nubilalis (Lepidoptera: Pyralidae): Glycerol content, hexose monophosphate shunt activity, and antioxidative defense system. Eur J Entomol 101:459–466

    Article  CAS  Google Scholar 

  • Sutcliffe DW (1963) The chemical composition of haemolymph in insects and some other arthropods, in relation to their phylogeny. Comp Biochem Physiol 9:121–135

    Article  CAS  Google Scholar 

  • Tauber MJ, Tauber CA, Masaki S (1986) Seasonal adaptations of insects. Oxford University Press, New York

    Google Scholar 

  • US EPA Method 200.7:2001 Determination of metals and trace elements in water and wastes by inductively coupled plasma-atomic emission spectrometry, Revision 4.4. Cincinnati, OH

  • Uzelac I, Avramov M, Čelić T, Vukašinović E, Gošić-Dondo S, Purać J, Kojić D, Blagojević D, Popović ŽD (2020) Effect of cold acclimation on selected metabolic enzymes during diapause in The European Corn Borer Ostrinia nubilalis (Hbn). Sci Rep 10:9085

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Vukašinović E, Pond WD, Worland MR, Kojić D, Purać J, Blagojević PD, Grubor-Lajšić G (2013) Diapause induces changes in the composition and biophysical properties of lipids in larvae of the European corn borer, Ostrinia nubilalis (Lepidoptera: Crambidae). Comp Biochem Physiol Part B 165:219–225

    Article  Google Scholar 

  • Vukašinović E, Pond WD, Worland MR, Kojić D, Purać J, Popović DŽ, Grubor-Lajšić G (2015) Diapause induces remodelling of the fatty acid composition of membrane and storage lipids in overwintering larvae of Ostrinia nubilalis, Hubn. (Lepidoptera: Crambidae). Comp Biochem Physiol Part B 184:36–43

    Article  Google Scholar 

  • Vukašinović EL, Pond DW, Grubor-Lajšić G, Worland MR, Kojić D, Purać J, Popović ZD, Blagojević DP (2018) Temperature adaptation of lipids in diapausing Ostrinia nubilalis: an experimental study to distinguish environmental versus endogenous controls. J Comp Physiol B 188:27–36

    Article  PubMed  Google Scholar 

  • Watanabe M, Tanaka K (2000) Hormonal control of diapause and overwintering traits in leaf beetle, Aulacophora nigripennis. Physiol Entomol 25:337–345

    Article  CAS  Google Scholar 

  • Wenzl T, Haedrich J, Schaechtele A, Robouch P, Stroka J (2016) Guidance document on the estimation of LOD and LOQ for measurements in the field of contaminants in feed and food. Publications Office of the European Union, Luxembourg. https://doi.org/10.2787/8931 (ISBN 978-92-79-61768-3)

    Book  Google Scholar 

  • Wigglesworth VB (1931) The physiology of excretion in a blood-sucking insect, Rhodnius prolixus (Hemiptera, Reduviidae). J Exp Biol 8:411–427

    Article  CAS  Google Scholar 

  • Zachariassen KE (1996) The water conserving physiological compromise of desert insects. Eur J Entomol 93:359–367

    Google Scholar 

  • Zachariassen KE, Kristiansen E, Pedersen SA (2004) Inorganic ions in cold-hardiness. Cryobiology 48:126–133

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Ministry of Science, Technological Development and Innovation of the Republic of Serbia (Grants No. ‪451-03-66/2024-03/ 200125 & 451-03-65/2024-03/200125).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvira L. Vukašinović.

Additional information

Communicated by Philip Withers.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vukašinović, E.L., Popović, Ž.D., Ninkov, J. et al. Management of inorganic elements by overwintering physiology of cold hardy larvae of European corn borer (Ostrinia nubilalis, Hbn.). J Comp Physiol B (2024). https://doi.org/10.1007/s00360-024-01537-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00360-024-01537-5

Keywords

Navigation