Skip to main content
Log in

Dormancy in the Copepoda — an overview

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Dormancy affects copepods in their anatomy, physiology, genetics, population biology, community ecology, evolution and local and geographic distribution. It is known from freeliving representatives of three copepod taxa, namely the Harpacticoida, Cyclopoida and Calanoida. Species showing dormancy occur in various realms and habitats, both freshwater and marine, being benthic, planktic or ice-dwelling. Depending on the taxon, dormancy occurs at various times of the year, prevailing in higher and temperate latitudes. Copepod dormancy is expressed in various ontogenetic stages, such as resting eggs, arrested larval development, juvenile and adult encystment, or arrested development of nonencysted copepodids or adults. Ecologically, dormancy is an energy saving trait, allowing the individual to bridge periods of environmental harshness. Adverse environmental conditions could be abiotic (e.g. desiccation, temperature, oxygen availability) or biotic in nature (e.g. food availability, predation). Diapause s. str. is initiated, maintained and terminated by triggering factors (e.g. photoperiod, temperature, chemical cues, population density/physiological factors). The dormant state and emergence patterns directly affect reproduction, population dynamics, community composition, coexistence and distribution of copepods, as well as the phenology of their predators and living food items. Populations having dormancy, in most cases belong to and affect communities of two realms: the water column and the bottom. Dormant stages may provide means for dispersal as well as for staying in special localities. The variability of dormancy permits flexible and complex life histories. Dormancy is subjected to and on the other hand affects copepod evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allan, J. D., 1976. Life history patterns in zooplankton. Am. Nat. 110: 165–180.

    Article  Google Scholar 

  • Ban, S., 1992. Effects of photoperiod, temperature, and population density on induction of diapause egg production in Eurytemora affinis (Copepoda: Calanoida) in Lake Ohnuma, Hokkaido, Japan. J. Crust. Biol. 12: 361–367.

    Google Scholar 

  • Ban, S. & T. Minoda, 1991. The effect of temperature on the development and hatching of diapause and subitaneous eggs in Eurytemora affinis (Copepoda: Calanoida) in Lake Ohnuma, Hokkaido, Japan. Bull. Plankton Soc. Japan, Spec. Vol.: 299–308.

  • Borutzky, E. W., 1929. 5. Zur Frage über den Ruhezustand bei Copepoda-Harpacticoida. Dauereier bei Canthocamptus arcticus Lilljeborg. Zool. Anz. 83: 225–233.

    Google Scholar 

  • Bowman, T. E. & L. G. Abele, 1982. Classification of the recent Crustacea. In D. E. Bliss (ed.), The biology of the Crustacea. 1. Systematics, the fossil record and biogeography. Academic Press, N.Y.: 1–27.

    Google Scholar 

  • Brewer, R. H., 1964. The phenology of Diaptomus stagnalis (Copepoda: Calanoida): the development and the hatching of the egg stage. Phys. Zool. 37: 1–20.

    Google Scholar 

  • Busa, W. B. & J. H. Crowe, 1983. Intracellular pH regulates the dormancy development transition of brine shrimp (Artemia salina) embryos. Science N.Y. 221: 366–368.

    Google Scholar 

  • Carlisle, D. B. & W. J. Pitman, 1961. Diapause, neurosecretion and hormones in Copepoda. Nature, Lond. 190: 827–828.

    Google Scholar 

  • Conover, R. J., 1988. Comparative life histories in the genera Calanus and Neocalanus in high latitudes of the northern hemisphere. Hydrobiologia 167/168: 127–142.

    Google Scholar 

  • Corkett, C. J. & I. A. McLaren, 1969. Egg production and oil storage by the copepod Pseudocalanus in the laboratory. J. Exp. Mar. Biol. Ecol. 3: 90–105.

    Article  Google Scholar 

  • Coull, B. C. & B. W. Dudley, 1976. Delayed naupliar development of meiobenthic copepods. Biol. Bull. 150: 38–46.

    Google Scholar 

  • Coull, B. C. & J. Grant, 1981. Encystment discovered in a marine copepod. Science, N.Y. 212: 342–344.

    Google Scholar 

  • Dahms, H.-U., 1991. Erster Nachweis eines Harpacticoiden (Copepoda) mit zystenloser Diapause. Verh. dt. Zool. Ges. 84: 442–443.

    Google Scholar 

  • Dahms, H.-U. & H. K. Schminke, 1992. Sea ice inhabiting Harpacticoida (Crustacea, Copepoda) of the Weddell Sea (Antarctica). Bull. Inst. R. Sci. Nat. Belgique, Biol. 62: 91–123.

    Google Scholar 

  • Dahms, H.-U., M. Bergmans & H. K. Schminke, 1990. Distribution and adaptations of sea ice inhabiting Harpacticoida (Crustacea, Copepoda) of the Weddell Sea (Antarctica). P.S.Z.N.I.: Mar. Ecol. 11: 207–226.

    Google Scholar 

  • Danks, H. V., 1987. Insect dormancy: An ecological perspective. Biol. Sur. Canada: 1–439.

  • Deevey, E. S., 1941. Notes on the encystment of the harpacticoid copepod Canthocamptus staphylinoides Pearse. Ecology 22: 197–200.

    Google Scholar 

  • De Stasio, B. T., 1990. The role of dormancy and emergence patterns in the dynamics of a freshwater zooplankton community. Limnol. Oceanogr. 35: 1079–1090.

    Google Scholar 

  • Einsle, U., 1964. Larvalentwicklung von Cyclopiden und Photoperiodik. Die Naturwissenschaften 51: 345.

    Google Scholar 

  • Elgmork, K., 1959. Seasonal occurrence of Cyclops strenuus in relation to environment in small water bodies in southern Norway. Folia Limnol. Scand. 11: 1–196.

    Google Scholar 

  • Elgmork, K., 1962. A bottom resting stage in the planktonic freshwater copepod Cyclops scutifer Sars. Oikos 13: 306–310.

    Google Scholar 

  • Elgmork, K., 1967. Ecological aspects of diapause in copepods. Proc. Syrup. Crust. III. Mar. Biol. Assoc. India, Symp. Ser. 2: 947–954.

    Google Scholar 

  • Elgmork, K., 1980. 38. Evolutionary aspects of diapause in freshwater copepods. In W. C. Kerfoot (ed.), Evolution and Ecology of Zooplankton Communities. The University Press of New England, Hanover (NH), London: 411–417.

    Google Scholar 

  • Elgmork, K. & J. P. Nilssen, 1978. Equivalence of copepod and insect diapause. Verh. int. Ver. Limnol. 20: 2511–2517.

    Google Scholar 

  • Fryer, G. & W. J. P. Smyly, 1954. 10. Some remarks on the resting stages of some freshwater cyclopoid and harpacticoid copepods. Ann. Mag. nat. Hist. ser. 12: 65–72.

    Google Scholar 

  • George, D. G., 1973. Diapause in Cyclops vicinus. Oikos 24: 136–142.

    Google Scholar 

  • Grice, G. D. & V. R. Gibson, 1975. Occurrence, viability and significance of resting eggs of the calanoid copepod Labidocera aestiva. Mar. Biol., Berlin 31: 335–337.

    Google Scholar 

  • Grice, G. D. & N. H. Marcus, 1981. Dormant eggs of marine copepods. Oceanogr. Mar. Biol. Ann. Rev. 19: 125–140.

    Google Scholar 

  • Grigg, H. & S. J. Bardwell, 1982. Seasonal observations on moulting and maturation in stage V copepodites of Calanus finmarchicus from the Firth of Clyde. J. mar. biol. Ass. U.K. 62: 315–327.

    Google Scholar 

  • Hairston, N. G., 1987. 18. Diapause as a predator-avoidance adaptation. In Predation: Direct and indirect impacts on aquatic communities. W. C. Kerfoot & A. Sib (eds). Univ. Press of New England, Hanover: 281–290.

    Google Scholar 

  • Hairston, N. G. & B. T. De Stasio, 1988. Rate of evolution slowed by a dormant propagule pool. Nature 336: 239–242.

    Article  Google Scholar 

  • Hairston, N. G. & T. A. Dillon, 1990. Fluctuating selection and response in a population of freshwater copepods. Evolution 44: 1796–1805.

    Google Scholar 

  • Hairston, N. G. & W. R. Munns, 1984. The timing of copepod diapause as an evolutionarily stable strategy. Am. Nat. 123: 733–751.

    Article  Google Scholar 

  • Hairston, N. G. & E. J. Olds, 1984. Population differences in the timing of diapause: adaptation in a spatially heterogeneous environment. Oecologia 61: 42–48.

    Google Scholar 

  • Hairston, N. G. & E. J. Olds, 1986. Partial photoperiodic control of diapause in three populations of the freshwater copepod Diaptomus sanguineus. Biol. Bull. 171: 135–142.

    Google Scholar 

  • Hairston, N. G. & E. J. Olds, 1987. Population differences in the timing of diapause: a test of hypotheses. Oecologia 71: 339–344.

    Google Scholar 

  • Hairston, N. G., T. A. Dillon & B. T. De Stasio, 1990. A field test for the cues of diapause in a freshwater copepod. Ecology 71: 2218–2223.

    Google Scholar 

  • Hairston, N. G., E. J. Olds & W. R. Munns, 1985. Bet-hedging and environmentally cued diapause strategies of diaptomid copepods. Verh. int. Ver. Limnol. 22: 3170–3177.

    Google Scholar 

  • Hallberg, E. & H. J. Hirche, 1980. Differentiation of mid-gut in adults and overwintering copepodids of Calanus finmarchicus and C. helgolandicus. J. exp. mar. Biol. Ecol. 48: 283–295.

    Article  Google Scholar 

  • Hirche, H.-J., 1983. Overwintering of Calanus finmarchicus and Calanus helgolandicus. Mar. Ecol. Prog. Ser. 11: 281–290.

    Google Scholar 

  • Ianora, A. & L. Santella, 1991. Diapause embryos in the neustonic copepod Anomalocera patersoni. Mar. Biol. 108: 387–394.

    Google Scholar 

  • Johnson, J. K., 1980. Effects of temperature and salinity on production and hatching of dormant eggs of Acartia californiensis (Copepoda) in an Oregon estuary. Fish. Bull. 77: 567–584.

    Google Scholar 

  • Kasahara, S., S-i. Uye & T. Onbe, 1974. Calanoid copepod eggs in sea-bottom muds. Mar. Biol., Berlin 26: 167–171.

    Google Scholar 

  • Lacroix, G. & F. Lescher-Moutoue, 1984. Diapause des Cyclopides d'un écosystèm lacustre peu profond (Lac de Créteil, France). Annls Limnol. 20: 183–192.

    Google Scholar 

  • Landry, M. R., 1975. Dark inhibition of egg hatching of the marine copepod Acartia clausi Giesbr. J. exp. mar. Biol. Ecol. 20: 43–47.

    Article  Google Scholar 

  • Levins, R., 1969. Dormancy as an adaptive strategy. Symposium of the Society for Experimental Biology 23: 1–10.

    Google Scholar 

  • Lindley, J. A., 1992. Resting eggs of the Centropagoidea (Copepoda: Calanoida): a possible preadaptation to colonizing of inland waters. J. Crust. Biol. 12: 368–371.

    Google Scholar 

  • Marcus, N. H., 1979. On the population biology and nature of diapause of Labidocera aestiva (Copepoda: Calanoida). Biol. Bull. 157: 297–305.

    Google Scholar 

  • Marcus, N. H., 1980. Photoperiodic control of diapause in the marine calanoid copepod Labidocera aestiva. Biol. Bull. 159: 311–318.

    Google Scholar 

  • Marcus, N. H., 1984a. Recruitment of copepoda nauplii into the plankton: importance of diapause eggs and benthic processes. Mar. Ecol. Prog. Ser. 15: 47–54.

    Google Scholar 

  • Marcus, N. H., 1984b. Variation in the diapause response of Labidocera aestiva (Copepoda: Calanoida) from different latitudes and its importance in the evolutionary process. Biol. Bull. 166: 127–139.

    Google Scholar 

  • Marcus, N. H. & J. Schmidt-Gengenbach, 1986. Recruitment of individuals into the plankton: the importance of bioturbation. Limnol. Oceanogr. 31: 206–210.

    Google Scholar 

  • Miller, C. B., T. J. Cowles, P. H. Wiebe, N. J. Copley & H. Grigg, 1991. Phenology in Calanus finmarchicus; hypotheses about control mechanisms. Mar. Ecol. Prog. Ser. 72: 79–91.

    Google Scholar 

  • Naess, T. & J. P. Nilssen, 1991. Diapausing fertilized adults. Oecologia 86: 368–371.

    Google Scholar 

  • Nilssen, J. P., 1980. 39. When and how to reproduce: a dilemma for limnetic cyclopoid copepods. In W. C. Kerfoot (ed.), Evolution and ecology of zooplankton communities. Univ. Press of New England: 418–426.

  • Rzoska, J., 1961. Observations on tropical rainpools and general remarks on temporary waters. Hydrobiologia 17: 265–286.

    Google Scholar 

  • Sarvala, J., 1979. Benthic resting periods of pelagic cyclopoids in an oligotrophic lake. Holarct. Ecol. 2: 88–100.

    Google Scholar 

  • Smith, S. L. & S. B. Schnack-Schiel, 1990. Polar zooplankton. In W. O. Smith (ed.), Polar Oceanography, Academic Press.

  • Smyly, W. J. P., 1962. Laboratory experiments with stage V copepodids of the freshwater copepod Cyclops leuckarti Claus, from Windermere and Esthwaite water. Crustaceans 4: 273–281.

    Google Scholar 

  • Spindler, K.-D., 1971. Dormanzauslösung und Dormanzcharakteristika beim Süsswassercopepoden Cyclops vicinus. Zool. Jb. Physiol. 76: 139–151.

    Google Scholar 

  • Stearns, S. C., 1977. The evolution of life history traits: a critique of the theory and a review of the data. Annu. Rev. Ecol. Syst. 8: 145–171.

    Article  Google Scholar 

  • Strickler, J. R. & S. Twombly, 1975. Reynolds number, diapause, and predatory copepods. Verh. int. Ver. Limnol. 19: 2943–2950.

    Google Scholar 

  • Tande, K. S., 1982. Ecological investigations on the zooplankton community of Balsfjorden, northern Norway: generation cycles, and variations in body weight and body content of carbon and nitrogen related to overwintering and reproduction in the copepod Calanus finmarchicus (Gunnerus). J. exp. mar. Biol. Ecol. 62: 129–142.

    Article  Google Scholar 

  • Thienemann, A., 1950. Verbreitungsgeschichte der Süss-wassertierwelt Europas. Die Binnengewässer. Vol. 18, Stuttgart: 1–809.

  • Uye, S.-i., 1980. Development of neritic copepods Acartia clausi and A. steueri. I. Some environmental factors affecting egg development and the nature of resting eggs. Bull. Plankton Soc. Japan 27: 1–9.

    Google Scholar 

  • Uye, S.-i., 1985. Resting egg production as a life history strategy of marine planktonic copepods. Bull. Mar. Sci. 37: 440–449.

    Google Scholar 

  • Uye, S.-i., S. Kasahara & T. Onbe, 1979. Calanoid copepod eggs in sea-bottom muds. IV. Effects of some environmental factors on the hatching of resting eggs. Mar. Biol. 51: 151–156.

    Google Scholar 

  • Walton, W. E., 1985. Factors regulating the reproductive phenology of Onychodiaptomus birgei (Copepoda: Calanoida). Limnol. Oceanogr. 30: 167–179.

    Google Scholar 

  • Warner, R. R. & P. L. Chesson, 1985. Coexistence mediated by recruitment fluctuations: a field guide to the storage effect. Am. Nat. 125: 769–787.

    Article  Google Scholar 

  • Watras, C. J., 1980. Subitaneous and resting eggs of copepods: relative rates of clutch production by Diaptomus leptopus. Can. J. Fish. aquat. Sci. 37: 1579–1581.

    Google Scholar 

  • Watson, N. H. F., 1986. Variability of diapause in copepods. In Schriever, G., H. K. Schminke & C.-t. Shih (eds). Proc. 2nd Int. Conf. Copepoda, Ottawa, Canada. Syllogeus 58: 509–513.

  • Watson, N. H. F. & B. N. Smallman, 1971. The role of photoperiod and temperature in the induction and termination of an arrested development in two species of freshwater cyclopoid copepods. Can. J. Zool. 49: 855–862.

    Google Scholar 

  • Wierzbicka, M., 1962. On the resting stage and mode of life of some species of Cyclopoida. Polsk. Arch. Hydrobiol. 10: 215–229.

    Google Scholar 

  • Williams-Howze, J. & B. C. Coull, 1992. Are temperature and photoperiod necessary cues for encystment in the marine benthic harpacticoid copepod Heteropsyllus nunni Coull? Biol. Bull. 182: 109–116.

    Google Scholar 

  • Wyngaard, G. A., 1988. Geographical variation in dormancy in a copepod: evidence from population crosses. Hydrobiologia 167/168 (Dev. Hydrobiol. 47): 367–374.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahms, HU. Dormancy in the Copepoda — an overview. Hydrobiologia 306, 199–211 (1995). https://doi.org/10.1007/BF00017691

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00017691

Key words

Navigation