Skip to main content
Log in

The cold but not hard fats in ectotherms: consequences of lipid restructuring on susceptibility of biological membranes to peroxidation, a review

  • Review
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The production of reactive oxygen species is a regular feature of life in the presence of oxygen. Some reactive oxygen species possess sufficient energy to initiate lipid peroxidation in biological membranes, self-propagating reactions with the potential to damage membranes by altering their physical properties and ultimately their function. Two of the most prominent patterns of lipid restructuring in membranes of ectotherms involve contents of polyunsaturated fatty acids and ratios of the abundant phospholipids, phosphatidylcholine and phosphatidylethanolamine. Since polyunsaturated fatty acids and phosphatidylethanolamine are particularly vulnerable to oxidation, it is likely that higher contents of these lipids at low body temperature elevate the inherent susceptibility of membranes to lipid peroxidation. Although membranes from animals living at low body temperatures may be more prone to oxidation, the generation of reactive oxygen species and lipid peroxidation are sensitive to temperature. These scenarios raise the possibility that membrane susceptibility to lipid peroxidation is conserved at physiological temperatures. Reduced levels of polyunsaturated fatty acids and phosphatidylethanolamine may protect membranes at warm temperatures from deleterious oxidations when rates of reactive oxygen species production and lipid peroxidation are relatively high. At low temperatures, enhanced susceptibility may ensure sufficient lipid peroxidation for cellular processes that require lipid oxidation products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ChOOH:

Cholesterol hydroperoxide

CoQ:

Ubiquinone or coenzyme Q

GPx1:

Classic glutathione peroxidase

GPx4:

Glutathione peroxidase 4

LOOH:

Lipid hydroperoxide

LOX:

Lipoxygenase

LPO:

Lipid peroxidation

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PLA2 :

Phospholipase A2

PLOOH:

Phospholipid hydroperoxide

PUFA:

Polyunsaturated fatty acid

ROS:

Reactive oxygen species

TBARS:

Thiobarbituric acid-reactive substance

References

  • Abele D, Puntarulo S (2004) Formation of reactive oxygen species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish. Comp Biochem Physiol 138A:405–415

    CAS  Google Scholar 

  • Abele D, Burlando B, Viarengo A, Pörtner HO (1998) Exposure to elevated temperatures and hydrogen peroxide elicits oxidative stress and antioxidant response in the Antarctic intertidal limpet Nacella concinna. Comp Biochem Physiol 120B:425–435

    CAS  Google Scholar 

  • Abele D, Heise K, Pörtner HO, Puntarulo S (2002) Temperature-dependence of mitochondrial function and production of reactive oxygen species in the intertidal mud clam Mya arenaria. J Exp Biol 205:1831–1841

    PubMed  CAS  Google Scholar 

  • Alvarez MJ, Lopez-Bote CJ, Diez A, Corraze G, Arzel J, Dias J, Kaushik SJ, Bautista JM (1998) Dietary fish oil and digestible protein modify susceptibility to lipid peroxidation in the muscle of rainbow trout (Oncorhynchus mykiss) and seabass (Dicentrarchus labrax). Br J Nutr 80:281–289

    PubMed  CAS  Google Scholar 

  • Azzi A, Stocker A (2000) Vitamin E: non-antioxidant roles. Prog Lipid Res 39:231–255

    Article  PubMed  CAS  Google Scholar 

  • Bagnyukova TV, Storey KB, Lushchak VI (2003) Induction of oxidative stress in Rana ridibunda during recovery from winter hibernation. J Therm Biol 28:21–28

    Article  CAS  Google Scholar 

  • Bagnyukova TV, Lushchak OV, Storey KB, Lushchak VI (2007) Oxidative stress and antioxidant defense responses by goldfish tissues to acute change of temperature from 3 to 23°C. J Therm Biol 32:227–234

    Article  CAS  Google Scholar 

  • Barry JP, Baxter CH, Sagarin RD, Gilman SE (1995) Climate-related, long-term faunal changes in a California rocky intertidal community. Science 267:672–674

    Article  PubMed  CAS  Google Scholar 

  • Battino R, Evans FD, Danforth WF (1968) The solubilities of seven gases in olive oil with reference to theories of transport through the cell membrane. J Am Oil Chem Soc 45:830–833

    Article  PubMed  CAS  Google Scholar 

  • Battino M, Ferri E, Villa Gorini A, RF Rodrigues, Huertas JF, Fiorella P, Genova ML, Lenaz G, Marchetti M (1990) Natural distribution and occurrence of coenzyme Q homologues. Memb Biochem 9:179–190

    Article  CAS  Google Scholar 

  • Behan-Martin MK, Jones GR, Bowler K, Cossins AR (1993) A near perfect temperature adaptation of bilayer order in vertebrate brain membranes. Biochim Biophys Acta 1151:216–222

    Article  PubMed  CAS  Google Scholar 

  • Brash AR (1999) Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem 274:23679–23682

    Article  PubMed  CAS  Google Scholar 

  • Brigelius-Flohé R (1999) Tissue-specific functions of individual glutathione peroxidases. Free Rad Biol Med 27:951–965

    Article  PubMed  Google Scholar 

  • Brooks S, Clark GT, Wright SM, Trueman RJ, Postle AD, Cossins AR, Maclean NM (2002) Electrospray ionisation mass spectrometric analysis of lipid restructuring in the carp (Cyprinus carpio L.) during cold acclimation. J Exp Biol 205:3989–3997

    PubMed  CAS  Google Scholar 

  • Buda C, Dey I, Balogh N, Horvath LI, Maderspach K, Juhasz M, Yeo YK, Farkas T (1994) Structural order of membranes and composition of phospholipids in fish brain cells during thermal acclimatization. Proc Natl Acad Sci USA 91:8234–8238

    Article  PubMed  CAS  Google Scholar 

  • Cancio I, Ibabe A, Cajaraville MP (1999) Seasonal variation of peroxisomal enzyme activities and peroxisomal structure in mussels Mytilus galloprovincialis and its relationship with the lipid content. Comp Biochem Physiol 123C:135–144

    CAS  Google Scholar 

  • Carey C, Hazel JR (1989) Diurnal variation in membrane lipid composition of Sonoran desert teleosts. J Exp Biol 147:375–391

    CAS  Google Scholar 

  • Chakraborty H, Sen P, Sur A, Chatterjee U, Chakrabarti S (2003) Age-related oxidative inactivation of Na+, K+-ATPase in rat brain crude synaptosomes. Exp Geron 38:705–710

    Article  CAS  Google Scholar 

  • Coolbear KP, Keough KMW (1983) Lipid oxidation and gel to liquid–crystalline transition temperatures of synthetic polyunsaturated mixed-acid phosphatidylcholines. Biochim Biophys Acta 732:531–540

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove JP, Church DF, Pryor WA (1987) The kinetics of the autoxidation of polyunsaturated fatty acids. Lipids 22:299–304

    Article  PubMed  CAS  Google Scholar 

  • Cossins AR, Christiansen J, Prosser CL (1978) Adaptation of biological membranes to temperature. The lack of homeoviscous adaptation in the sarcoplasmic reticulum. Biochim Biophys Acta 511:442–454

    Article  PubMed  CAS  Google Scholar 

  • Cossins AR, Kent J, Prosser CL (1980) A steady-state and differential polarised phase fluorometric study of the liver microsomal and mitochondrial membranes of thermally acclimated green sunfish (Lepomis cyanellus). Biochim Biophys Acta 599:341–358

    Article  PubMed  CAS  Google Scholar 

  • Crockett EL (1998) Cholesterol function in plasma membranes from ectotherms: membrane-specific roles in adaptation to temperature. Am Zool 38:291–304

    CAS  Google Scholar 

  • Crockett EL, Hazel JR (1995) Cholesterol levels explain inverse compensation of membrane order in brush border but not homeoviscous adaptation in basolateral membranes from the intestinal epithelia of rainbow trout. J Exp Biol 198:1105–1113

    PubMed  CAS  Google Scholar 

  • Desaulniers N, Moerland TS, Sidell BD (1996) High lipid content enhances the rate of oxygen diffusion through fish skeletal muscle. Am J Physiol 271:R42–R47

    PubMed  CAS  Google Scholar 

  • Dinis TCP, Almeida LM, Madeira VMC (1993) Lipid peroxidation in sarcoplasmic reticulum membranes: effect on functional and biophysical properties. Arch Biochem Biophys 301:256–264

    Article  PubMed  CAS  Google Scholar 

  • Dey I, Buda C, Wiik T, Halver JE, Farkas T (1993) Molecular and structural composition of phospholipid membranes in livers of marine and freshwater fish in relation to temperature. Proc Natl Acad Sci USA 90:7498–7502

    Article  PubMed  CAS  Google Scholar 

  • Dotan Y, Lichtenberg D, Pinchuk I (2004) Lipid peroxidation cannot be used as a universal criterion of oxidative stress. Prog Lipid Res 43:200–227

    Article  PubMed  CAS  Google Scholar 

  • Drobnies AE, van der Ende B, Thewalt JL, Cornell RB (1999) CTP: phosphocholine cytidylyltransferase activation by oxidized phosphatidylcholines correlates with a decrease in lipid order: a 2H NMR analysis. Biochem 38:15606–15614

    Article  CAS  Google Scholar 

  • Drobnies AE, Davies SMA, Kraayenhof R, Epand RF, Epand RM, Cornell RB (2002) CTP:phosphocholine cytidylyltransferase and protein kinase C recognize different physical features of membranes: differential responses to an oxidized phosphatidylcholine. Biochim Biophys Acta 1564:82–90

    Article  PubMed  CAS  Google Scholar 

  • Dunlap WC, Fujisawa A, Yamamoto Y, Moylan TJ, Sidell BD (2002) Notothenioid fish, krill and phytoplankton from Antarctica contain a vitamin E constituent (α-tocomonoenol) functionally associated with cold-water adaptation. Comp Biochem Physiol 133B:299–305

    CAS  Google Scholar 

  • Egginton S, Sidell BD (1989) Thermal acclimation induces adaptive changes in subcellular structure of fish skeletal muscle. Am J Physiol 256:R1–R9

    PubMed  CAS  Google Scholar 

  • Eichenberger K, Böhni B, Winterhalter KH, Kawato S, Richter C (1982) Microsomal lipid peroxidation causes an increase in the order of the membrane lipid domain. FEBS Lett 142:59–62

    Article  PubMed  CAS  Google Scholar 

  • Ernster L, Dallner G (1995) Biochemical, physiological and medical aspects of ubiquinone function. Biochim Biophys Acta 1271:195–204

    PubMed  Google Scholar 

  • Estevez MS, Abele D, Puntarulo S (2002) Lipid radical generation in polar (Laternula elliptica) and temperate (Mya arenaria) bivalves. Comp Biochem Physiol 132B:729–737

    Google Scholar 

  • Farkas T, Kitajka K, Fodor E, Csengeri I, Lahdes E, Yeo YK, Krasznai Z, Halver JE (2000) Docosahexaenoic acid-containing phospholipid molecular species in brains of vertebrates. Proc Natl Acad Sci USA 97:6362–6366

    Article  PubMed  CAS  Google Scholar 

  • Fodor E, Jones RH, Buda C, Kitajka K, Dey I, Farkas T (1995) Molecular architecture and biophysical properties of phospholipids during thermal adaptation in fish: an experimental and model study. Lipids 30:1119–1126

    Article  PubMed  CAS  Google Scholar 

  • Frankel EN (1998) Lipid oxidation. The Oily Press, Dundee

    Google Scholar 

  • Garland T, Adolph SC (1994) Why not to do two-species comparative studies: limitation on inferring adaptation. Physiol Zool 67:797–828

    Google Scholar 

  • Gennis RB (1989) Biomembranes: molecular structure and function. Springer, New York

    Google Scholar 

  • Giardina B, Gozzo ML, Zappacosta B, Colacicco L, Calla C, Mordente A, Lippa S (1997) Coenzyme Q homologs and trace elements content of Antarctic fishes Chionodraco hamatus and Pagothenia bernacchii compared with the Mediterranean fish Mugil cephalus. Comp Biochem Physiol 118A:977–980

    Article  CAS  Google Scholar 

  • Gieseg SP, Cuddihy S, Hill JV, Davison W (2000) A comparison of plasma vitamin C and E levels in two Antarctic and two temperate water fish species. Comp Biochem Physiol 125B:371–378

    CAS  Google Scholar 

  • Girotti AW (1985) Mechanisms of lipid peroxidation. J Free Rad Biol Med 1:87–95

    Article  CAS  Google Scholar 

  • Gorgas K, Teigler A, Komljenovic D, Just WW (2006) The ether lipid-deficient mouse: tracking down plasmalogen function. Biochim Biophys Acta 1763:1511–1526

    Article  PubMed  CAS  Google Scholar 

  • Guderley H (2004) Metabolic responses to low temperature in fish muscle. Biol Rev Camb Philos Soc 79:409–427

    Article  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford University Press, Oxford

    Google Scholar 

  • Hazel JR (1995) Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Ann Rev Physiol 57:19–42

    CAS  Google Scholar 

  • Hazel JR, Williams EE (1990) The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog Lipid Res 29:167–227

    Article  PubMed  CAS  Google Scholar 

  • Hazel JR, McKinley SJ, Gerrits MF (1998) Thermal acclimation of phase behavior in plasma membrane lipids of rainbow trout hepatocytes. Am J Physiol 44:R861–R869

    Google Scholar 

  • Heise K, Puntarulo S, Nikinmaa M, Abele D, Pörtner HO (2006) Oxidative stress during stressful heat exposure and recovery in the North Sea eelpout Zoarces viviparous L. J Exp Biol 209:353–363

    Article  PubMed  CAS  Google Scholar 

  • Heise K, Estevez MS, Puntarulo S, Galleano M, Nikinmaa M, Pörtner HO, Abele D (2007) Effects of seasonal and latitudinal cold on oxidative stress parameters and activation of hypoxia inducible factor (HIF-1) in zoarcid fish. J Comp Physiol 177B:765–777

    Google Scholar 

  • Holman RT (1954) Autoxidation of fats and related substances. In: Holman RT, Lundberg WO, Malkin T (eds) Progress in chemistry of fats and other lipids. Pergamon, London, pp 51–98

    Google Scholar 

  • Huang CH, Huang MC, Hou PC (1998) Effect of dietary lipids on fatty acid composition and lipid peroxidation in sarcoplasmic reticulum of hybrid tilapia, Oreochromis niloticus × O. aureus. Comp Biochem Physiol 120B:331–336

    CAS  Google Scholar 

  • Hulbert AJ, Else PL (2005) Membranes and the setting of energy demand. J Exp Biol 208:1593–1599

    Article  PubMed  CAS  Google Scholar 

  • Hulbert AJ, Pamplona R, Buffenstein R, Buttemer WA (2007) Life and death: metabolic rate, membrane composition, and life span of animals. Physiol Rev 87:1175–1213

    Article  PubMed  CAS  Google Scholar 

  • IPCC (2007) Climate change 2007: synthesis report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [core writing team, Pachauri RK, Reisinger A (eds)]. IPCC Geneva, Switzerland, 104 pp

  • Jemiola-Rzeminska M, Kruk J, Skowronek M, Strzalka K (1996) Location of ubiquinone homologues in liposome membranes studied by fluorescence anisotropy of diphenylhexatriene and trimethylammonium-diphenyl-hexatriene. Chem Phys Lipids 79:55–63

    Article  PubMed  CAS  Google Scholar 

  • Johnston IA, Maitland B (1980) Temperature acclimation in crucian carp, Carassius carassius L., morphometric analyses of muscle fibre ultrastructure. J Fish Biol 17:113–123

    Article  Google Scholar 

  • Kagan VE (1988) Lipid peroxidation in biomembranes. CRC Press, Boca Raton

    Google Scholar 

  • Kagan VE, Borisenko GG, Tyurina YY, Tyurin VA, Jiang J, Potapovich AI, Kini V, Amoscato AA, Fujii Y (2004) Oxidative lipidomics of apoptosis: redox catalytic interactions of cytochrome c with cardiolipin and phosphatidylserine. Free Rad Biol Med 37:1963–1985

    Article  PubMed  CAS  Google Scholar 

  • Kambayashi Y, Yamamoto Y, Nakano M (1998) Preferential hydrolysis of oxidized phosphatidylcholine in cholesterol-containing phosphatidylcholine liposomes by phospholipase A2. Biochem Biophys Res Comm 245:705–708

    Article  PubMed  CAS  Google Scholar 

  • Kawakatsu M, Terao J, Matsushita S (1984) Phospholipid oxidation catalyzed by ferrous ion and ascorbic acid. Agric Biol Chem 48:1275–1279

    CAS  Google Scholar 

  • Keller M, Sommer AM, Pörtner HO, Abele D (2004) Seasonality of energetic functioning and production of reactive oxygen species by lugworm (Arenicola marina) mitochondria exposed to acute temperature changes. J Exp Biol 207:2529–2538

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi K, Sakai K, Suzuki T, Takama K (1999) Fatty acid composition of choline and ethanolamine glycerophospholipid subclasses in heart tissue of mammals and migratory and demersal fish. Comp Biochem Physiol 124B:1–6

    CAS  Google Scholar 

  • Kraffe E, Marty Y, Guderley H (2007) Changes in mitochondrial oxidative capacities during thermal acclimation of rainbow trout Oncorhynchus mykiss: roles of membrane proteins, phospholipids and their fatty acid compositions. J Exp Biol 210:149–165

    Article  PubMed  CAS  Google Scholar 

  • Kühn H, Borchert A (2002) Regulation of enzymatic lipid peroxidation: the interplay of peroxidizing and peroxide reducing enzymes. Free Rad Biol Med 33:154–172

    Article  PubMed  Google Scholar 

  • Kühn H, Thiele BJ (1999) The diversity of the lipoxygenase family. FEBS Lett 449:7–11

    Article  PubMed  Google Scholar 

  • Labbe C, Maisse G, Muller K, Zachowski A, Kaushik S, Loir M (1995) Thermal acclimation and dietary lipids alter the composition, but not fluidity, of trout sperm plasma membrane. Lipids 30:23–33

    Article  PubMed  CAS  Google Scholar 

  • Lannig GT, Flores JF, Sokolova IM (2006) Temperature-dependent stress response in oysters, Crassostrea virginica: pollution reduces temperature tolerance in oysters. Aquat Toxicol 79:278–287

    Article  PubMed  CAS  Google Scholar 

  • Lee AG (1991) Lipids and their effects on membrane proteins: evidence against a role for fluidity. Prog Lipid Res 30:323–348

    Article  PubMed  CAS  Google Scholar 

  • Lee AG (2003) Lipid–protein interactions in biological membranes: a structural perspective. Biochim Biophys Acta 1612:1–40

    Article  PubMed  CAS  Google Scholar 

  • Lee AG (2004) How lipids affect the activities of integral membrane proteins. Biochim Biophys Acta 1666:62–87

    Article  PubMed  CAS  Google Scholar 

  • Lee JA, Cossins AR (1990) Temperature adaptation of biological membranes: differential homeoviscous responses in brush border and basolateral membranes of carp intestinal mucosa. Biochim Biophys Acta 1026:195–203

    Article  PubMed  CAS  Google Scholar 

  • Leggatt RA, Brauner CJ, Schulte PM, Iwama GK (2007) Effects of acclimation and incubation temperature on the glutathione antioxidant system in killifish and RTH-149 cells. Comp Biochem Physiol 146A:317–326

    CAS  Google Scholar 

  • Lesser MP, Kruse VA (2004) Seasonal temperature compensation in the horse mussel, Modiolus modiolus: metabolic enzymes, oxidative stress and heat shock proteins. Comp Biochem Physiol 137A:495–504

    CAS  Google Scholar 

  • Lin WY, Huang CH (2007) Fatty acid composition and lipid peroxidation of soft-shelled turtle, Pelodiscus sinensis, fed different dietary lipid sources. Comp Biochem Physiol 144C:327–333

    CAS  Google Scholar 

  • Logue JA, DeVries AL, Fodor E, Cossins AR (2000) Lipid compositional correlates of temperature-adaptive interspecific differences in membrane physical structure. J Exp Biol 203:2105–2115

    PubMed  CAS  Google Scholar 

  • Lushchak VI, Bagnyujova TV (2006) Temperature increase results in oxidative stress in goldfish tissues I. Indices of oxidative stress. Comp Biochem Physiol 143C:30–35

    CAS  Google Scholar 

  • Malanga G, Estevez MS, Calvo J, Abele D, Puntarulo S (2007) The effect of seasonality on oxidative metabolism in Nacella (Patinigera) magellanica. Comp Biochem Physiol 146A:551–558

    CAS  Google Scholar 

  • Malek RL, Sajadi H, Abraham J, Grundy MA, Gerhard GS (2004) The effects of temperature reduction on gene expression and oxidative stress in skeletal muscle from adult zebrafish. Comp Biochem Physiol 138C:363–373

    CAS  Google Scholar 

  • Matheson DF, Wei R, Roots BI (1980) Changes in the fatty acyl composition of phospholipids in the optic tectum and optic nerve of temperature-acclimated goldfish. Physiol Zool 53:57–69

    CAS  Google Scholar 

  • Megli FM, Sabatini K (2003a) Respiration state IV-generated ROS destroy the mitochondrial bilayer packing order in vitro. An EPR study. FEBS Lett 550:185–189

    Article  PubMed  CAS  Google Scholar 

  • Megli FM, Sabatini K (2003b) EPR studies of phospholipid bilayers after lipoperoxidationI. Inner molecular order and fluidity gradient. Chem Phys Lipids 125:161–172

    Article  PubMed  CAS  Google Scholar 

  • Mourente G, Bell JG, Tocher DR (2007) Does dietary tocopherol level affect metabolism in fish? Fish Physiol Biochem 33:269–280

    Article  CAS  Google Scholar 

  • Murray IVJ, Sindoni ME, Axelson PH (2005) Promotion of oxidative lipid membrane damage by amyloid β proteins. Biochem 44:12606–12613

    Article  CAS  Google Scholar 

  • Nagan N, Zoeller R (2001) Plasmalogens: biosynthesis and functions. Prog Lipid Res 40:199–229

    Article  PubMed  CAS  Google Scholar 

  • Neas NP, Hazel JR (1985) Phospholipase A2 from liver microsomal membranes of thermally acclimated trout. J Exp Zool 233:51–60

    Article  CAS  Google Scholar 

  • Nigam S, Schewe T (2000) Phospholipase A2 and lipid peroxidation. Biochim Biophys Acta 1488:167–181

    PubMed  CAS  Google Scholar 

  • O’Brien KM, Sidell BD (2000) The interplay among cardiac ultrastructure, metabolism and the expression of oxygen-binding proteins in Antarctic fishes. J Exp Biol 203:1287–1297

    PubMed  CAS  Google Scholar 

  • Olsen RE, Lovaas E, Lie Ø (1999) The influence of temperature, dietary polyunsaturated fatty acids, alpha-tocopherol and spermine on fatty acid composition and indices of oxidative stress in juvenile arctic char, Salvelinus alpinus (L.). Fish Physiol Biochem 20:13–29

    Article  CAS  Google Scholar 

  • Ohshima T, Wada S, Koizumi C (1989) 1-O-alk–1’-enyl-2-acyl and 1-O-alkyl-2-acyl glycerophospholipids in white muscle of bonito Euthymus pelamis (Linnaeus). Lipids 24:363–370

    Article  CAS  Google Scholar 

  • Parasassi T, Giusti AM, Raimondi M, Ravagnan G, Sapora O, Gratton E (1995) Cholesterol protects the phospholipid bilayer from oxidative damage. Free Rad Biol Med 19:511–516

    Article  PubMed  CAS  Google Scholar 

  • Parihar MS, Dubey AK (1995) Lipid peroxidation and ascorbic acid status in respiratory organs of male and female freshwater catfish Heteropneustes fossilis exposed to temperature increase. Comp Biochem Physiol 112C:309–313

    CAS  Google Scholar 

  • Parihar MS, Dubey AK, Javeri T, Prakash P (1996) Changes in lipid peroxidation, superoxide dismutase activity, ascorbic acid and phospholipid content in liver of freshwater catfish Heteropneustes fossilis exposed to elevated temperature. J Therm Biol 21:323–330

    Article  CAS  Google Scholar 

  • Parihar MS, Javeri T, Hamnani T, Dubey AK, Prakash P (1997) Responses of superoxide dismutase activity, glutathione peroxidase and reduced glutathione antioxidant defenses in gills of the freshwater catfish (Heteropneustes fossilis) to short-term elevated temperature. J Therm Biol 22:151–156

    Article  CAS  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  PubMed  CAS  Google Scholar 

  • Pasenkiewicz-Gierula M, Subczynski WK, Kusumi A (1990) Rotational diffusion of a steroid molecule in phosphatidylcholine-cholesterol membranes: effects of alkyl chain length and unsaturation in the fluid phase. Biochim Biophy Acta 854:307–317

    Google Scholar 

  • Ramasarma T (1985) Natural occurrence and distribution of coenzyme Q. In: Lenaz G (ed) coenzyme Q. Wiley, New York, pp 67–79

    Google Scholar 

  • Rashba-Step J, Tatoyan A, Duncan R, Ann D, Pushpa-Rehka TR, Sevanian A (1997) Phospholipid peroxidation induces cytosolic phospholipase A2 activity: membrane effects versus enzyme phosphorylation. Arch Biochem Biophys 343:44–54

    Article  PubMed  CAS  Google Scholar 

  • Regoli F, Nigro M, Bompadre S, Winston GW (2000) Total antioxidant scavenging capacity (TOSC) of microsomal and cytosolic fractions from Antarctic, Arctic and Mediterranean scallops: differentiation between three potent oxidants. Aquat Toxicol 49:13–25

    Article  PubMed  CAS  Google Scholar 

  • Ricciarelli R, Zingg JM, Azzi A (2001) Vitamin E: protective role of a Janus molecule. FASEB J 15:2314–2325

    Article  PubMed  CAS  Google Scholar 

  • Robertson JC, Hazel JR (1995) Cholesterol content of trout plasma membranes varies with acclimation temperature. Am J Physiol 38:R1113–R1119

    Google Scholar 

  • Rodnick KJ, Sidell BD (1994) Cold-acclimation increases carnitine palmitoyltransferase I activity in oxidative muscle of striped bass. Am J Physiol 35:R405–R412

    Google Scholar 

  • Ronisz D, Larsson DGJ, Förlin L (1999) Seasonal variations in the activities of selected hepatic biotransformation and antioxidant enzymes in eelpout (Zoarces viviparous). Comp Biochem Physiol 124C:271–279

    CAS  Google Scholar 

  • Roots BI, Johnston PV (1968) Plasmalogens of the nervous system and environmental temperature. Comp Biochem Physiol 26:553–556

    Article  PubMed  CAS  Google Scholar 

  • Roy R, Das AB, Ghosh D (1997) Regulation of membrane lipid bilayer structure during seasonal variation: a study on the brain membranes of Clarias batrachus. Biochim Biophys Acta 1323:65–74

    Article  PubMed  CAS  Google Scholar 

  • Selivonchick DP, Roots BI (1976) Variations in myelin lipid composition induced by change in environmental temperature of goldfish (Carassius auratus L.). J Therm Biol 1:131–135

    Article  CAS  Google Scholar 

  • Sengupta P, Baird B, Holowka D (2007) Lipid rafts, fluid/fluid phase separation, and their relevance to plasma membrane structure and function. Semin Cell Dev Biol 18:583–590

    Article  PubMed  CAS  Google Scholar 

  • Sidell BD (1998) Intracellular oxygen diffusion: the roles of myoglobin and lipid at cold body temperature. J Exp Biol 201:1118–1127

    Google Scholar 

  • Sidell BD, Crockett EL, Driedzic WR (1995) Antarctic fish tissues preferentially catabolize monoenoic fatty acids. J Exp Zool 271:73–81

    Article  CAS  Google Scholar 

  • Sinensky M (1974) Homeoviscous adaptation—a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci USA 71:522–525

    Article  PubMed  CAS  Google Scholar 

  • Skowronek M, Jemiola-Rzeminska M, Kruk J, Strzalka K (1996) Influence of the redox state of ubiquinones and plastoquinones on the order of lipid bilayers studied by fluorescence anisotropy of diphenylhexatriene and trimethylammonium diphenylhexatriene. Biochim Biophys Acta 1280:115–119

    Article  PubMed  Google Scholar 

  • Sohal RS (2004) Coenzyme Q and vitamin E interactions. Meth Enzymol 378:146–151

    Article  PubMed  CAS  Google Scholar 

  • Speers-Roesch B, Ballantyne JS (2005) Activities of antioxidant enzymes and cytochrome c oxidase in liver of Arctic and temperate teleosts. Comp Biochem Physiol 140A:487–494

    CAS  Google Scholar 

  • Starke-Peterkovic T, Turner N, Else PL, Clarke RJ (2005) Electric field strength of membrane lipids from vertebrate species: membrane lipid composition and Na+-K+-ATPase molecular activity. Am J Physiol 288:R663–R670

    CAS  Google Scholar 

  • St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD (2002) Topology of the superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277:44784–44790

    Article  PubMed  CAS  Google Scholar 

  • Stillwell W, Wassall SR (2003) Docosahexaenoic acid: membrane properties of a unique fatty acid. Chem Phys Lipids 126:1–27

    Article  PubMed  CAS  Google Scholar 

  • Stillwell W, Dallman T, Dumaual AC, Crump T, Jenski LJ (1996) Cholesterol versus α-tocopherol: effects on properties of bilayers made from heteroacid phosphatidylcholines. Biochem 35:13353–13362

    Article  CAS  Google Scholar 

  • Thomas JP, Maiorino M, Ursini F, Girotti AW (1990) Protective action of phospholipid hydroperoxide glutathione peroxidase against membrane-damaging lipid peroxidation. J Biol Chem 265:454–461

    PubMed  CAS  Google Scholar 

  • Tiku PE, Gracey AY, Macartney AI, Beynon RJ, Cossins AR (1996) Cold-induced expression of delta 9-desaturase in carp by transcriptional and posttranslational mechanisms. Science 271:815–818

    Article  PubMed  CAS  Google Scholar 

  • Traber MG, Atkinson J (2007) Vitamin E, antioxidant and nothing more. Free Rad Biol Med 43:4–15

    Article  PubMed  CAS  Google Scholar 

  • Trueman RJ, Tiku PE, Caddick MX, Cossins AR (2000) Thermal thresholds of lipid restructuring and delta(9)-desaturase expression in the liver of carp (Cyprinus carpio L.). J Exp Biol 203:641–650

    PubMed  CAS  Google Scholar 

  • Turunen M, Olsson J, Dallner G (2004) Metabolism and function of coenzyme Q. Biochim Biophys Acta 1660:171–199

    Article  PubMed  CAS  Google Scholar 

  • Tyler S, Sidell BD (1984) Changes in mitochondrial distribution and diffusion distrances in muscle of goldfish upon acclimation to warm and cold temperatures. J Exp Zool 232:1–9

    Article  Google Scholar 

  • Ursini F, Maiorino M, Valente M, Ferri L, Gregolin C (1982) Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides. Biochim Biophys Acta 710:197–211

    PubMed  CAS  Google Scholar 

  • Van den Berg JJM, Op den Kamp JAF, Lubin BH, Kuypers FA (1993) Conformational changes in oxidized phospholipids and their preferential hydrolysis by phospholipase A2: a monolayer study. Biochem 32:4962–4967

    Article  Google Scholar 

  • Van den Thillart G, de Bruin G (1981) Influence of environmental temperature on mitochondrial membranes. Biochim Biophys Acta 640:439–447

    Article  PubMed  Google Scholar 

  • Van Duijn G, Verkleij AJ, de Kruijff B (1984) Influence of phospholipid peroxidation on the phase behavior of phosphatidylcholine and phosphatidylethanolamine in aqueous dispersions. Biochem 23:4969–4977

    Article  Google Scholar 

  • Viarengo A, Canesi L, Pertica M, Livingstone DR (1991) Seasonal variations in the antioxidant defense systems and lipid peroxidation of the digestive gland of mussels. Comp Biochem Physiol 100C:187–190

    CAS  Google Scholar 

  • Viarengo A, Canesi L, Martinez PG, Peters LD, Livingstone DR (1995) Pro-oxidant processes and antioxidant defence systems in the tissues of the Antarctic scallop (Adamussium colbecki) compared with the Mediterranean scallop (Pecten jacobaeus). Comp Biochem Physiol 111B:119–126

    CAS  Google Scholar 

  • Viarengo A, Abele-Oeschger D, Burlando B (1998) Effects of low temperature on prooxidant processes and antioxidant defence systems in marine organisms. In: Pörtner HO, Playle RC (eds) Cold ocean physiology. Cambridge University Press, Cambridge, pp 212–235

    Google Scholar 

  • Vornanen M, Tiitu V, Kälelä R, Aho E (1999) Effects of thermal acclimation on the relaxation system of crucian carp white myotomal muscle. J Exp Zool 284:241–251

    Article  PubMed  CAS  Google Scholar 

  • Wang JY, Wang ZY, Kouyama T, Shibata T, Ueki T (1994) Significance of amino groups of phosphatidylethanolamine in phospholipid peroxidation of mixed liposomes. Chem Phys Lipids 71:197–203

    Article  PubMed  CAS  Google Scholar 

  • Williams EE (1998) Membrane lipids: what membrane physical properties are conserved during physiochemically-induced membrane restructuring? Am Zool 38:280–290

    CAS  Google Scholar 

  • Winston GW (1991) Oxidants and antioxidants in aquatic animals. Comp Biochem Physiol 100C:173–176

    CAS  Google Scholar 

  • Witas H, Gabtyelak T, Matkovics B (1984) Comparative studies on superoxide dismutase and catalase activities in livers of fish and other Antarctic vertebrates. Comp Biochem Physiol 77C:409–411

    CAS  Google Scholar 

  • Wodtke E (1978) Lipid adaptation in liver mitochondrial membranes of carp acclimated to different environmental temperatures. Biochim Biophys Acta 529:280–291

    PubMed  CAS  Google Scholar 

  • Wodtke E (1981) Temperature adaptation of biological membranes. The effects of acclimation temperature on the unsaturation of the main neutral and charged phospholipids in mitochondrial membranes of the carp (Cyprinus carpio L.). Biochim Biophys Acta 640:698–709

    Article  PubMed  CAS  Google Scholar 

  • Wratten ML, van Ginkel G, van’t Veld A, Bekker A, van Faassen EE, Sevanian A (1992) Structural and dynamic effects of oxidatively modified phospholipids in unsaturated lipid membranes. Biochem 31:10901–10907

    Article  CAS  Google Scholar 

  • Wu BJ, Else PL, Storlien LH, Hulbert AJ (2001) Molecular activity of Na+/K+-ATPase from different sources is related to the packing of membrane lipids. J Exp Biol 204:4271–4280

    PubMed  CAS  Google Scholar 

  • Yamamoto Y, Maita N, Fujisawa A, Takashima J, Ishii Y, Dunlap WC (1999) A new vitamin E (alpha-tocomonoenol) from eggs of the Pacific salmon Oncorhynchus keta. J Nat Prod 62:1685–1687

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Fujisawa A, Hara A, Dunlap WC (2001) An unusual vitamin E constituent (alpha-tocomonenol) provides enhanced antioxidant protection in marine organisms adapted to cold-water environments. Proc Natl Acad Sci USA 98:13144–13148

    Article  PubMed  CAS  Google Scholar 

  • Yeagle PL (1985) Cholesterol and the cell membrane. Biochim Biophys Acta 822:267–287

    PubMed  CAS  Google Scholar 

  • Yeo YK, Park EJ, Lee CW, Joo HT, Farkas T (1997) Ether lipid composition and molecular species alterations in carp brain (Cyprinus carpio L.) during normoxic temperature acclimation Neurochem Res 22:1257–1264

    Google Scholar 

  • Yoshida Y, Niki E, Noguchi N (2003) Comparative study on the action of tocopherols and tocotrienolds as antioxidant: chemical and physical effects. Chem Phys Lipids 123:63–75

    Article  PubMed  CAS  Google Scholar 

  • Zehmer JK, Hazel JR (2003) Plasma membrane rafts of rainbow trout are subject to thermal acclimation. J Exp Biol 206:1657–1667

    Article  PubMed  CAS  Google Scholar 

  • Zehmer JK, Hazel JR (2005) Thermally induced changes in lipid composition of raft and non-raft regions of hepatocyte plasma membranes of rainbow trout. J Exp Biol 208:4283–4290

    Article  PubMed  CAS  Google Scholar 

  • Zieger MAJ, Gupta MP, Siddiqui RA (2006) Endothelial cell fatty acid unsaturation mediates cold-induced oxidative stress. J Cell Biochem 99:784–796

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank three anonymous reviewers who provided helpful comments. My appreciation extends to Albert W. Girotti and Tamas Kriska for their continued encouragement. I am particularly grateful to R. Patrick Hassett for always his help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth L. Crockett.

Additional information

Communicated by I.D. Hume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crockett, E.L. The cold but not hard fats in ectotherms: consequences of lipid restructuring on susceptibility of biological membranes to peroxidation, a review. J Comp Physiol B 178, 795–809 (2008). https://doi.org/10.1007/s00360-008-0275-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-008-0275-7

Keywords

Navigation