Skip to main content

Advertisement

Log in

Molecular identification, immunolocalization, and functional activity of a vacuolar-type H+-ATPase in bovine rumen epithelium

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

In this study, we have studied the expression, localization, and functionality of vacuolar-type H+-ATPase (vH+-ATPase) and Na+/K+-ATPase in the bovine rumen epithelium. Compared with the intracellular pH (pHi) of control rumen epithelial cells (REC; 7.06 ± 0.07), application of inhibitors selective for vH+-ATPase (foliomycin) and Na+/K+-ATPase (ouabain) reduced pHi by 0.10 ± 0.03 and 0.18 ± 0.03 pH-units, respectively, thereby verifying the existence of both functional proteins. Results from qRT-PCR and immunoblotting clearly confirm the expression of vH+-ATPase B subunit in REC. However, the amount of Na+/K+-ATPase mRNA and protein is tenfold and 11-fold of those of vH+-ATPase subunit B, respectively, reflecting a lower overall abundance of the latter in REC. Na+/K+-ATPase immunostaining has revealed the protein in the plasma membrane of all REC from the stratum basale to stratum granulosum, with the highest abundance in basal cells. In contrast, the vH+-ATPase B subunit has been detected in groups of cells only, mainly localized in the stratum spinosum and stratum granulosum of the epithelium. Furthermore, vH+-ATPase has been detected in the cell membrane and in intracellular pools. Thus, functional vacuolar-type H+ pumps are expressed in REC and probably play a role in the adaptation of epithelial transport processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

REC:

Rumen epithelial cells

vH+-ATPase:

Vacuolar-type H+-ATPase

pHi :

Intracellular pH

References

  • Adelsberg van J, Al-Awqati Q (1986) Regulation o cell pH by Ca2+-mediated exocytotic insertion of H+-ATPases. J Cell Biol 102:1638–1645

    Article  PubMed  Google Scholar 

  • Asari M, Sasaki K, Kano Y, Nishita T (1989) Immunohistochemical localization of carbonic anhydrase isozymes I, II and III in the bovine salivary glands and stomach. Arch Histol Cytol 52:337–344

    Article  PubMed  CAS  Google Scholar 

  • Bagnis C, Marshansky V, Breton S, Brown D (2001) Remodeling the cellular profile of collecting ducts by chronic carbonic anhydrase inhibition. Am J Physiol Renal Physiol 280:F437–F448

    PubMed  CAS  Google Scholar 

  • Brown D, Breton S (1996) Mitochondria-rich, proton-secreting epithelial cells. J Exp Biol 199:2345–2358

    PubMed  CAS  Google Scholar 

  • Brown D, Breton S (2000) H+V-ATPase dependent luminal acidification in the kidney collecting duct and the epididymis/vas deferens: vesicle recycling and transcytotic pathways. J Exp Biol 203:137–145

    PubMed  CAS  Google Scholar 

  • Dou H, Xu J, Wang Z, Smith AN, Soleimani M, Karet FE, Greinwald JH, Choo D (2004) Co-expression of pendrin, vacuolar H+-ATPase α4-subunit and carbonic anhydrase II in epithelial cells of the murine endolymphatic sac. J Histochem Cytochem 52:1377–1384

    Article  PubMed  CAS  Google Scholar 

  • Drose S, Bindseil KU, Bowman EJ, Siebers A, Zeeck A, Altendorf K (1993) Inhibitory effect of modified bafilomycins and concanamycins on P- and V-type adenosinetriphosphatases. Biochemistry 32:3902–3906

    Article  PubMed  CAS  Google Scholar 

  • Ehrenfeld J, Klein U (1997) The key role of the H+ V-ATPase in acid-base balance and Na+ transport processes in frog skin. J Exp Biol 200:247–256

    PubMed  CAS  Google Scholar 

  • Elbrond VS, Jones CJP, Skadhauge E (2004) Localization, morphology and function of the mitochondria-rich cells in relation to transepithelial Na+-transport in chicken lower intestine (coprodeum). Comp Biochem Physiol A 137:683–696

    Article  CAS  Google Scholar 

  • Etschmann B, Heipertz S, von der Schulenburg A, Schweigel M (2006) A vH+-ATPase is present in cultured sheep ruminal epithelial cells. Am J Physiol Gastrointest Liver Physiol 291:G1171–G1179

    Article  PubMed  CAS  Google Scholar 

  • Gäbel G, Aschenbach JR, Müller F (2002) Transfer of energy substrates across the ruminal epithelium: implications and limitations. Anim Health Res Rev 3:15–30

    Article  PubMed  CAS  Google Scholar 

  • Galfi P, Neogrady S, Kutas F (1980) Culture of ruminal epithelial cells from bovine ruminal mucosa. Vet Res Commun 4:295–300

    Article  Google Scholar 

  • Galfi P, Kutas F, Neogrady S (1982) Immunohistochemical detection of bovine ruminal carbonic anhydrase isoenzyme. Histochemistry 74:577–584

    Article  PubMed  CAS  Google Scholar 

  • Gluck SL, Nelson RD, Lee BS, Wang Z, Guo X, Fu J, Zhang K (1992) Biochemistry of the renal V-ATPase. J Exp Biol 172:219–229

    PubMed  CAS  Google Scholar 

  • Graham C, Simmons NL (2005) Functional organization of bovine rumen epithelium. Am J Physiol Regul Integr Comp Physiol 288:173–181

    Google Scholar 

  • Graham C, Gatherar I, Haslam I, Glanville M, Simmons NL (2007) Expression and localization of monocarboxylate transporters and sodium/proton exchangers in bovine rumen epithelium. Am J Physiol Regul Integr Comp Physiol 292:997–1007

    Google Scholar 

  • Granger D, Marsolais M, Burry J, Laprade R (2002) V-type H+-ATPase in human eccrine sweat duct: immunolocalization and functional demonstration. Am J Physiol Cell Physiol 282:C1454–C1460

    PubMed  CAS  Google Scholar 

  • Hansen O (1998) Isoform of Na+,K+-ATPase from rumen epithelium identified and quantified by immunochemical methods. Acta Physiol Scand 163:201–208

    Article  PubMed  CAS  Google Scholar 

  • Hawkings GS, Galvez F, Goss GG (2004) Seawater acclimation causes independent alterations in Na+/K+- and H+-ATPase activity in isolated mitochondria-rich cell subtypes of the rainbow trout gill. J Exp Biol 207:905–912

    Article  PubMed  CAS  Google Scholar 

  • Heming TA, Bidani A (2002) Plasmalemmal H+ extruders in mammalian alveolar macrophages. Comp Biochem Physiol A 133:143–150

    Article  Google Scholar 

  • Henrikson RC (1971) Mechanism of sodium transport across ruminal epithelium: a study by electron microscopy using horseradish peroxidase, lanthanum and ferritin. J Ultrastruct Res 34:72–82

    Article  PubMed  CAS  Google Scholar 

  • Hou Y, Delamere NA (2000) Studies on H+-ATPase in cultured rabbit nonpigmented ciliary epithelium. J Membr Biol 173:67–72

    Article  PubMed  CAS  Google Scholar 

  • Jensen LJ, Sorensen JN, Larsen EH, Willumsen NJ (1997) Proton activity of mitochondria-rich cells. The interpretation of external proton-concentration gradients. J Gen Physiol 109:73–91

    Article  PubMed  CAS  Google Scholar 

  • Karwatowska-Prokopczuk E, Nordberg JA, Li HL, Engler RL, Gottlieb RA (1998) Effect of vacuolar proton ATPase on pHi, Ca2+ and apoptosis in neonatal cardiomyocytes during metabolic inhibition/recovery. Circ Res 82:1139–1144

    PubMed  CAS  Google Scholar 

  • Kelly JM, McBride BW, Milligan LP (1993) In vitro ouabain-sensitive respiration and protein synthesis in ruminal epithelial papillae of Hereford steers fed either alfalfa or bromegrass hay once daily. J Anim Sci 71:2799–2808

    PubMed  CAS  Google Scholar 

  • Kramer T, Michelberger T, Gürtler H, Gäbel G (1996) Absorption of short-chain fatty acids across rumen epithelium of sheep. J Comp Physiol B 166:262–269

    Article  PubMed  CAS  Google Scholar 

  • Kristensen NB, Hansen O, Clausen T (1995) Measurement of the total concentration of functional Na+, K+-pumps in the rumen epithelium. Acta Physiol Scand 155:67–76

    Article  PubMed  CAS  Google Scholar 

  • Larsen EH, Willumsen NJ, Christoffersen BC (1992) Role of proton pump of mitochondria-rich cells for active transport of chloride ions in toad skin epithelium. J Physiol (Lond) 450:203–216

    CAS  Google Scholar 

  • Lee BS, Gluck SL, Holliday LS (1999) Interaction between vacuolar H+-ATPase and microfilaments during osteoclast activation. J Biol Chem 41:29164–29171

    Article  Google Scholar 

  • Löhrke B, Viergutz T, Krüger B (2005) Polar phospholipids from bovine endogenously oxidized low density lipoprotein interfere with follicular thecal function. J Mol Endocrinol 35:531–545

    Article  PubMed  CAS  Google Scholar 

  • Mills JW, Ernst SA, DiBona DR (1977) Localization of Na-pump sites in frog skin. J Cell Biol 73:88–110

    Article  PubMed  CAS  Google Scholar 

  • Müller M, Aschenbach JR, Gäbel G (2000) Role of Na+/H+ exchange and HCO 3 transport in pHi recovery from intracellular acid load in cultured epithelial cells of sheep rumen. J Comp Physiol B 170:337–343

    Article  PubMed  Google Scholar 

  • Nakamura S (2004) Glucose activates H+-ATPase in kidney epithelial cells. Am J Physiol Cell Physiol 287:C97–C105

    Article  PubMed  CAS  Google Scholar 

  • Nanda A, Brumell JH, Nordström T, Kjeldsen L, Sengelav H, Borregaard N, Rotstein OD, Grinstein S (1996) Activation of proton pumping in human neutrophils occurs by exocytosis of vesicles bearing vacuolar-type H+-ATPases. J Biol Chem 271:15963–15970

    Article  PubMed  CAS  Google Scholar 

  • Nelson N (1992) Structure and function of V-ATPases in endocytotic and secretory organelles. J Exp Biol 172:149–153

    PubMed  CAS  Google Scholar 

  • Pastor-Soler N, Beaulieu V, Litvin TN, Da Silva N, Chen Y, Brown D, Buck J, Levin LR, Breton S (2003) Bicarbonate-regulated adenyl cyclase (sAC) is a sensor that regulates pH-dependent v-ATPase recycling. J Biol Chem 278:49523–49529

    Article  PubMed  CAS  Google Scholar 

  • Piermarini PM, Evans DH (2001) Immunochemical analysis of the vacuolar proton-ATPase B-subunit in the gills of a euryhaline stingray (Dasyatis sabina): effects of salinity and relation to Na+/K+-ATPase. J Exp Biol 204:3251–3259

    PubMed  CAS  Google Scholar 

  • Roussa E, Alper SL, Thevenod F (2001) Immunolocalization of anion exchanger AE2, Na+/H+ exchangers NHE1 and NHE4, and vacuolar type H+-ATPase in rat pancreas. J Histochem Cytochem 49:463–474

    PubMed  CAS  Google Scholar 

  • Rozengurt E (1980) Stimulation of Na influx, Na–K pump activity and DNA synthesis in quiescent cultured cells. Adv Enzyme Regul 19: 61–85

    Article  PubMed  CAS  Google Scholar 

  • Sautin YY, Lu M, Gaugler A, Zhang L, Gluck SL (2005) Phosphatidylinositol 3-kinase-mediated effects of glucose on vacuolar H+-ATPase assembly, translocation, and acidification of intracellular compartments in renal epithelial cells. Mol Cell Biol 25:575–589

    Article  PubMed  CAS  Google Scholar 

  • Schweigel M, Martens H (2003) Anion-dependent Mg2+ influx and a role for a vacuolar H+-ATPase in sheep ruminal epithelial cells. Am J Physiol Gastrointest Liver Physiol 285:G45–G53

    PubMed  CAS  Google Scholar 

  • Schweigel M, Vormann J, Martens H (2000) Mechanisms of Mg2+ transport in cultured ruminal epithelial cells. Am J Physiol Gastrointest Liver Physiol 278:G400–G408

    PubMed  CAS  Google Scholar 

  • Schweigel M, Freyer M, Leclercq S, Etschmann B, Lodemann U, Böttcher A, Martens H (2005) Luminal hyperosmolarity decreases Na transport and impairs barrier function of sheep rumen epithelium. J Comp Physiol B 175:575–591

    Article  PubMed  CAS  Google Scholar 

  • Schweigel M, Park H-S, Etschmann B, Martens H (2006) Characterization of the Na+-dependent Mg2+ transport in sheep ruminal epithelial cells. Am J Physiol Gastrointest Liver Physiol 290:G56–G65

    Article  PubMed  CAS  Google Scholar 

  • Sehested J, Diernaes L, Moller PD, Skadhauge E (1996) Transport of sodium across the isolated rumen epithelium: interaction with short-chain fatty acids, chloride and bicarbonate. Exp Physiol 81:79–94

    PubMed  CAS  Google Scholar 

  • Sehested J, Diernaes L, Moller PD, Skadhauge E, Sehested J, Diernaes L, Moller PD, Skadhauge E (1999) Ruminal transport and metabolism of short chain fatty acids (SCFA) in vitro: effects of SCFA chain length and pH. Comp Biochem Physiol A 123:359–368

    Article  CAS  Google Scholar 

  • Sennoune SR, Bakunts K, Martinez GM, Chua-Tuan JL, Kebir Y, Attaya MN, Martinez-Zaguilan R (2004) Vacuolar H+-ATPase in human breast cancer cells with distinct metastatic potential: distribution and functional activity. Am J Physiol Cell Physiol 286:C1443–C1452

    Article  PubMed  CAS  Google Scholar 

  • Skinner MA, MacLaren LA, Wildeman AG (1999) Stage-dependent redistribution of v-ATPase during bovine implantation. J Histochem Cytochem 47:1247–1254

    PubMed  CAS  Google Scholar 

  • Standley PR, Zhang F, Zayas RM, Muniyappa R, Walsh F, Cragoe E, Sowers JR (1997) IGF-1 regulation of Na+–K+-ATPase in rat arterial smooth muscle. Am J Physiol Endocrinol Metab 273:E113–E121

    CAS  Google Scholar 

  • Ulbrich SE, Rehfeld S, Bauersachs S, Wolf E, Rottmayer R, Hiendleder S, vermehren M, Sinowatz F, Meyer HHD (2006) Region-specific expression of nitric oxide synthases in the bovine oviduct during the oestrous cycle and in vitro. J Endocrinol 188:205–213

    Article  PubMed  CAS  Google Scholar 

  • Wagner CA, Giebisch G, Lang F, Geibel JP (1998) Angiotensin II stimulates vesicular H+-ATPase in rat proximal tubular cells. PNAS 95:9665–9668

    Article  PubMed  CAS  Google Scholar 

  • Weihrauch D, Ziegler A, Siebers D, Towle DW (2002) Active ammonia secretion across the gills of the green shore crab Carcinus maenas: participation of Na+/K+-ATPase, V-type H+-ATPase and functional microtubules. J Exp Biol 205:2765–2775

    PubMed  CAS  Google Scholar 

  • Winter C, Schulz N, Giebisch G, Geibel JP, Wagner CA (2004) Nongenomic stimulation of vacuolar H+-ATPases in intercalated renal tubule cells by aldosterone. PNAS 101:2636–2641

    Article  PubMed  CAS  Google Scholar 

  • Würmli R, Wolffram S, Scharrer E (1987) Inhibition of chloride absorption from sheep rumen by nitrate. J Vet Med A 34:476–479

    Article  Google Scholar 

  • Zouzoulas A, Dunham PB, Blostein R (2005) The effect of the gamma modulator on Na/K pump activity in intact mammalian cells. J Membr Biol 204:49–56

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the valuable technical assistance of K. Wolf (Institute of Veterinary Physiology, Free University Berlin) with the Western blots. We also thank R. Brose, H. Pröhl, S. Dwars and K. Marquardt (FBN Dummerstorf) for their excellent technical assistance and Dr. Theresa Jones for linguistic corrections.

This study was supported by the DFG (M. Schweigel, SCHW 652).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Schweigel.

Additional information

Communicated by G. Heldmaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albrecht, E., Kolisek, M., Viergutz, T. et al. Molecular identification, immunolocalization, and functional activity of a vacuolar-type H+-ATPase in bovine rumen epithelium. J Comp Physiol B 178, 285–295 (2008). https://doi.org/10.1007/s00360-007-0221-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-007-0221-0

Keywords

Navigation