Skip to main content
Log in

Evidence for a membrane-bound carbonic anhydrase in the heart of an ancient vertebrate, the sea lamprey (Petromyzon marinus)

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

In order to gain insight into the early evolution of carbonic-anhydrase (CA) isozymes in vertebrates, the main objective of the present study was to determine whether the hearts of an ancient vertebrate species, Petromyzon marinus, possess a membrane-bound CA isozyme. Since a significant amount of CA activity appeared to be strongly associated with the heart membrane fraction after differential centrifugation and washing, further experiments were conducted to examine the inhibitor properties of the CA from the membrane fraction in comparison with lamprey cytoplasmic CA from the red blood cell (rbc) fraction. These experiments showed that the inhibitor properties of the CA from the heart membranes were significantly different from those of the cytoplasmic CA from lamprey rbcs. A final series of experiments showed that the membrane-bound CA in the lamprey heart is not anchored via a glycosylphosphatidylinositol (GPI) linkage. Taken together, the results of these studies indicate that a membrane-bound CA does appear to be present in the hearts of lamprey, but the properties of the membrane-bound CA isozyme in these ancient vertebrates appear to differ from those in more recently evolved groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Az :

acetazolamide

CA :

carbonic anhydrase

GPI :

glycosylphosphatidylinositol

PI-PLC :

phosphatidylinositol specific phospholipase C

Rbc :

red blood cell

References

  • Böttcher K, Waheed K, Sly WS (1994) Membrane-associated carbonic anhydrase from the crab gill: purification, characterization, and comparison with mammalian CAs. Arch Biochem Biophys 312(2):429–435

    Article  CAS  PubMed  Google Scholar 

  • Bruns W, Gros G (1992) Membrane-bound carbonic anhydrase in the heart. Am J Physiol 262:H577–H584

    CAS  PubMed  Google Scholar 

  • Carter MJ (1972) Carbonic anhydrase: iozymes, properties, distribution, and functional significance. Biol Rev 47:465–513

    CAS  Google Scholar 

  • Cross GAM (1987) Eukaryotic protein modification and membrane attachment via phosphatidylinositol. Cell 48:179–181

    CAS  PubMed  Google Scholar 

  • Dixon M (1953) The determination of enzyme inhibitor constants. Biochem J 55:107–171

    Google Scholar 

  • Easson LH, Stedman E (1937) The absolute activity of choline esterase. Proc R Soc Lond B 121:142–164

    Google Scholar 

  • Fujikawa-Adachi K, Nishimori I, Taguchi T, Onishi S (1999) Human carbonic anhydrase XIV (CA14): cDNA cloning, mRNA expression, and mapping to chromosome 1. Genomics 61:74–81

    CAS  PubMed  Google Scholar 

  • Geers C, Gros G (2000) Carbon dioxide transport and carbonic anhydrase in blood and muscle. Physiol Rev 80:681–715

    CAS  PubMed  Google Scholar 

  • Geers C, Krüger D, Siffert W, Schmid A, Bruns W, Gros G (1992) Carbonic anhydrase in skeletal and cardiac muscle from rabbit and rat. Biochem J 282:165–171

    CAS  PubMed  Google Scholar 

  • Gervais MR, Tufts BL (1998) Evidence for a membrane-bound carbonic anhydrase in the air bladder of bowfin (Amia calva), a primitive air-breathing fish. J Exp Biol 201:2205–2212

    CAS  PubMed  Google Scholar 

  • Gervais MR, Tufts BL (1999) Characterization of carbonic anhydrase and anion exchange in the erythrocytes of bowfin (Amia calva), a primitive air breathing fish. Comp Biochem Physiol 123A:343–350

    CAS  Google Scholar 

  • Gilmour KM, Henry RP, Wood CM, Perry SF (1997) Extracellular carbonic anhydrase and an acid-base disequilibrium in the blood of the dogfish Squalus acanthias. J Exp Biol 200:173–183

    CAS  PubMed  Google Scholar 

  • Gilmour KM, Perry SF, Bernier NJ, Henry RP, Wood CM (2001) Extracellular carbonic anhydrase in the dogfish, Squalus acanthias: a role in CO2 excretion. Physiol Biochem Zool 74(4):477–492

    CAS  PubMed  Google Scholar 

  • Gilmour KM, Shah B, Szebedinszky C (2002) An investigation of carbonic anhydrase activity in the gills and blood plasma of brown bullhead (Ameriurus nebulosus), longnose skate (Raja rhina), and spotted ratfish (Hydrolagus colliei). J Comp Physiol 172B:77–86

    Article  Google Scholar 

  • Heming TA, Vanoye CG, Stabenau EK, Roush ED, Fierke CA, Bidani A (1993) Inhibitor sensitivity of pulmonary vascular carbonic anhydrase. J Appl Physiol 75(4):1642–1649

    CAS  PubMed  Google Scholar 

  • Henry RP (1991) Techniques for measuring carbonic anhydrase activity in vitro. In: Dodgeson SJ, Tashian RE, Gros G, Carter ND (eds) The carbonic anhydrases: cellular physiology and genetics. Plenum Press, New York, pp 119–131

  • Henry RP (1996) Multiple roles of carbonic anhydrase in cellular transport and metabolism. Annu Rev Physiol 58:523–538

    CAS  PubMed  Google Scholar 

  • Henry RP, Dodgeson SJ, Forster RE, Storey BT (1986) Rat lung carbonic anhydrase: activity, localization and isozymes. J Appl Physiol 60:638–645

    CAS  PubMed  Google Scholar 

  • Henry RP, Smatresk NJ, Cameron JC (1988) The distribution of branchial carbonic anhydrase and the effects of gill and erythrocyte carbonic anhydrase inhibition in the channel catfish Ictalarus punctatus. J Exp Biol 134:201–218

    CAS  PubMed  Google Scholar 

  • Henry RP, Tufts BL, Boutilier RG (1993) The distribution of carbonic anhydrase type I and II isozymes in lamprey and trout: possible co-evolution with erythrocyte chloride/bicarbonate exchange. J Comp Physiol B 163:380–388

    CAS  Google Scholar 

  • Henry RP, Gilmour KM, Wood CM, Perry SF (1997a) Extracellular carbonic anhydrase activity and carbonic anhydrase inhibitors in the circulatory system of fish. Physiol Zool 70(6):650–659

    CAS  PubMed  Google Scholar 

  • Henry RP, Wang Y, Wood CM (1997b) Carbonic anhydrase facilitated CO2 and NH3 transport across the sarcolemma of trout white muscle. Am J Physiol 272:R1754–R1761

    CAS  PubMed  Google Scholar 

  • Hewett-Emmett D (2000) Evolution and distribution of the carbonic anhydrase gene families. In: Chegwidden WR, Carter ND, Edwards YH (eds) The carbonic anhydrases: new horizons. Birkhäuser Verlag, Boston, pp 29–76

  • Hewett-Emmett D, Tashian RE (1991) Structure and evolutionary origins of the carbonic anhydrase multigene family. In: Dodgeson SJ, Tashian RE, Gros G, Carter ND (eds) The carbonic anhydrases: cellular physiology and genetics. Plenum Press, New York, pp 15–31

  • Hewett-Emmett D, Tashian RE (1996) Functional diversity, conservation and convergence in the evolution of the α-, β-, and γ- carbonic anhydrase gene families. Mol Phyl Evol 5(1):50–77

    Article  CAS  Google Scholar 

  • Knüppel-Ruppert AS, Gros G, Harringer W, Kubis H (2000) Immunochemical evidence for a unique GPI-anchored carbonic anhydrase isozyme in human cardiomyocytes. Am J Physiol Heart Circ Physiol 278:H1335–H1344

    PubMed  Google Scholar 

  • Low M, Steinberg GJ, Waneck GL, Flavell RA, Kincade PW (1988) Cell-specific heterogeneity in sensitivity of phosphatidylinositol-anchored membrane anitgens to release by phospholipase C. J Immunol Meth 113:101–111

    CAS  PubMed  Google Scholar 

  • Maffia M, Trischitta F, Lionetto MG, Storelli C, Schettino T (1996) Bicarbonate absorption in the eel intestine: evidence for the presence of membrane-bound carbonic anhydrase on the brush border membranes of the enterocyte. J Exp Zool 275:365-373

    Article  CAS  PubMed  Google Scholar 

  • Maren TH (1967) Carbonic anhydrase: chemsitry, physiology and inhibition. Physiol Rev 47:595–781

    CAS  PubMed  Google Scholar 

  • Maren TH, Sanyal G (1983) The activity of sulfonamides and naions against the carbonic anhydrases of animals, plants and bacteria. Rev Pharmacol Toxicol 23:439–459

    Article  CAS  Google Scholar 

  • Maren TH, Parcell AL, Malik MN (1960) A kinetic analysis of carbonic anhydrase inhibition. J Pharmacol Exp Ther 130:389–400

    CAS  Google Scholar 

  • Maren TH, Friedland BR, Rittmaster RS (1980) Kinetic properties of primitive vertebrate carbonic anhydrases. Comp Biochem Physiol 67B:69–74

    CAS  Google Scholar 

  • Maren TH, Wynns GC, Wistrand PJ (1993) Chemical properties of carbonic anhydrase IV, the membrane-bound enzyme. Mol Pharmacol 44:901–905

    CAS  PubMed  Google Scholar 

  • Parkkila S, Parkkila A, Rajaniemi H, Shah GN, Grubb JH, Waheed A, Sly WS (2001) Expression of membrane-associated carbonic anhydrase XIV on neurons and axons in mouse and human brain. Proc Natl Acad Sci USA 98(4):1918–1923

    Article  CAS  PubMed  Google Scholar 

  • Parkkila S, Kivela A, Kaunisto K, Parkkila A, Hakkola J, Rajaniemi H, Waheed A, Sly WS (2002) The plasma membrane carbonic anhydrase in murine hepatocytes identified as isozyme XIV. BMC Gastroenterology 2:13–20

    Article  PubMed  Google Scholar 

  • Pelster B (1995) Mechanisms of acid release in isolated gas glands of the European ell Anguilla anguilla. Am J Physiol 269:R793–R799

    CAS  PubMed  Google Scholar 

  • Roush ED, Fierke CA (1992) Purification and characterization of a carbonic anhydrase II inhibitor from porcine plasma. Biochemistry 311:12536–12542

    Google Scholar 

  • Sanyal G (1984) Comparative carbon dioxide hydration kinetics and inhibition of carbonic anhydrase isozymes invertebrates. Ann NY Acad Sci 429:165–178

    CAS  PubMed  Google Scholar 

  • Sender S, Decker B, Fenske CD, Sly WS, Carter ND, Gros G (1998) Localization of carbonic anhydrase IV in rat and human heart muscle. J Histochem Cytochem 46:855–861

    CAS  PubMed  Google Scholar 

  • Sly WS, Hu PY (1995) Human carbonic anhydrases and carbonic anhydrase deficiencies. Annu Rev Biochem 64:375–401

    CAS  PubMed  Google Scholar 

  • Swenson ER, Maren TH (1987) Roles of gill and red blood cell carbonic anhydrase in elasmobranch HCO3- and CO2 excretion. Am J Physiol 253:R450–R458

    CAS  PubMed  Google Scholar 

  • Swenson ER, Lippincott L, Maren TH (1995) Effect of membrane-bound carbonic anhydrase inhibition on branchial bicarbonate excretion in the dogfish shark. Biol Bull Mar Biol Lab Woods Hole 34:94–95

    Google Scholar 

  • Tufts BL, Gervais MR, Moss AG, Henry RP (1999) Carbonic anhydrase and red blood cell anion exchange in the neotenic aquatic salamander, Necturus maculosus. Physiol Biochem Zool 72(3):317–327

    CAS  PubMed  Google Scholar 

  • Tufts BL, Gervais MR, Staebler M, Weaver J (2002) Subcellular distribution and characterization of gill carbonic anhydrase and evidence for a plasma carbonic anhydrase inhibitor in Antarctic fish. J Comp Physiol 172B(4):287–295

    Google Scholar 

  • Tufts BL, Esbaugh A, Lund SG (2003) Comparative physiology and molecular evolution of carbonic anhydrase in the erythrocytes of early vertebrates. Comp Biochem Physiol A 136:259–269

    Article  CAS  Google Scholar 

  • Vandenberg JI, Carter ND, Bethell HWL, Nogradi A, Ridderstrale Y, Metcalfe JC, Grace AA (1996) Carbonic anhydrase and cardiac pH regulation. Am J Physiol 271:C1838–C1846

    CAS  Google Scholar 

  • Waheed A, Okuyama T, Heyduk T, Sly WS (1996) Carbonic anhydrase IV: purification of a secretory form of the recombinant human enzyme and identification of the position and importance of its disulfide bonds. Arch Biochem Biophys 333(2):432–438

    Article  CAS  PubMed  Google Scholar 

  • Wetzel P, Gros G (2000) Carbonic anhydrases in skeletal muscle. In: Chegwidden WR, Carter ND, Edwards YH (eds) The carbonic anhydrases: new horizons. Birkhäuser Verlag, Boston, pp 375–399

  • Whitney PL, Briggle TV (1982) Membrane-associated carbonic anhydrase purified from bovine lung. J Biol Chem 257(20):12056–12059

    CAS  PubMed  Google Scholar 

  • Zhu XL, Sly WS (1990) Carbonic anhydrase IV from human lung. J Biol Chem 265(15):8795–8801

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support for this study was provided by an NSERC grant to BLT. AJE was supported by a OGS and NSERC graduate scholarships. The authors also gratefully acknowledge the Lamprey Control Center of the Department of Fisheries and Oceans in Sault Ste. Marie, Ontario, for their logistical support in obtaining experimental animals for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Esbaugh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esbaugh, A.J., Tufts, B.L. Evidence for a membrane-bound carbonic anhydrase in the heart of an ancient vertebrate, the sea lamprey (Petromyzon marinus). J Comp Physiol B 174, 399–406 (2004). https://doi.org/10.1007/s00360-004-0426-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-004-0426-4

Keywords

Navigation