Skip to main content
Log in

From electromyographic activity to frequency modulation in zebra finch song

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Behavior emerges from the interaction between the nervous system and peripheral devices. In the case of birdsong production, a delicate and fast control of several muscles is required to control the configuration of the syrinx (the avian vocal organ) and the respiratory system. In particular, the syringealis ventralis muscle is involved in the control of the tension of the vibrating labia and thus affects the frequency modulation of the sound. Nevertheless, the translation of the instructions (which are electrical in nature) into acoustical features is complex and involves nonlinear, dynamical processes. In this work, we present a model of the dynamics of the syringealis ventralis muscle and the labia, which allows calculating the frequency of the generated sound, using as input the electrical activity recorded in the muscle. In addition, the model provides a framework to interpret inter-syllabic activity and hints at the importance of the biomechanical dynamics in determining behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alonso R, Goller F, Mindlin GB (2014) Motor control of sound frequency in birdsong involves the interaction between air sac pressure and labial tension. Phys Rev E 89(3):032706

    Article  Google Scholar 

  • Amador A, Goller F, Mindlin GB (2008) Frequency modulation during song in a suboscine does not require vocal muscles. J Neurophysiol 99(5):2383–2389

    Article  PubMed  Google Scholar 

  • Boari S, Perl YS, Amador A, Margoliash D, Mindlin GB (2015) Automatic reconstruction of physiological gestures used in a model of birdsong production. J Neurophysiol 114(5):2912–2922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boessenecker A, Berry DA, Lohscheller J, Eysholdt U, Doellinger M (2007) Mucosal wave properties of a human vocal fold. Acta Acust United Acust 93(5):815–823

    Google Scholar 

  • Chiel HJ, Beer RD (1997) The brain has a body: adaptive behavior emerges from interactions of nervous system, body and environment. Trends Neurosci 20(12):553–557

    Article  CAS  PubMed  Google Scholar 

  • Doellinger M, Berry DA (2006) Visualization and quantification of the medial surface dynamics of an excised human vocal fold during phonation. J Voice 20(3):401–413

    Article  PubMed  Google Scholar 

  • Düring DN, Knörlein BJ, Elemans CPH, Schmidt M, Goller F, Riede T, Rome L (2017) In situ vocal fold properties and pitch prediction by dynamic actuation of the songbird syrinx. Sci Rep 7(1):11296

    Article  PubMed  PubMed Central  Google Scholar 

  • Elemans CPH, Rasmussen JH, Herbst CT, Düring DN, Zollinger SA, Brumm H, Srivastava K, Svane N, Ding M, Larsen ON, Sober SJ, Švec JG (2015) Universal mechanisms of sound production and control in birds and mammals. Nat Commun 6:8978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goller F, Cooper BG (2004) Peripheral motor dynamics of song production in the zebra finch. Ann NY Acad Sci 1016(1):130–152

    Article  PubMed  Google Scholar 

  • Goller F, Riede T (2013) Integrative physiology of fundamental frequency control in birds. J Physiol Paris 107(3):230–242

    Article  PubMed  Google Scholar 

  • Goller F, Suthers RA (1996a) Role of syringeal muscles in controlling the phonology of bird song. J Neurophysiol 76(1):287–300

    Article  CAS  PubMed  Google Scholar 

  • Goller F, Suthers RA (1996b) Role of syringeal muscles in gating airflow and sound production in singing brown thrashers. J Neurophysiol 75(2):867–876

    Article  CAS  PubMed  Google Scholar 

  • Jensen KK, Cooper BG, Larsen ON, Goller F (2007) Songbirds use pulse tone register in two voices to generate low-frequency sound. Proc R Soc Lond B Biol Sci 274(1626):2703–2710

    Article  Google Scholar 

  • Laje R, Gardner TJ, Mindlin GB (2002) Neuromuscular control of vocalizations in birdsong: A model. Phys Rev E 65(5):051921

    Article  Google Scholar 

  • Mencio C, Kuberan B, Goller F (2017) Contributions of rapid neuromuscular transmission to the fine control of acoustic parameters of birdsong. J Neurophysiol 117(2):637–645

    Article  PubMed  Google Scholar 

  • Riede T, Fisher JH, Goller F (2010) Sexual dimorphism of the zebra finch syrinx indicates adaptation for high fundamental frequencies in males. PLoS One 5(6):e11368

    Article  PubMed  PubMed Central  Google Scholar 

  • Rokni U, Sompolinsky H (2012) How the brain generates movement. Neural Comput 24(2):289–331

    Article  PubMed  Google Scholar 

  • Shapiro MB, Kenyon RV (2000) Control variables in mechanical muscle models: A mini-review and a new model. Motor Control 4(3):329–349

    Article  CAS  PubMed  Google Scholar 

  • Srivastava KH, Elemans CP, Sober SJ (2015) Multifunctional and context-dependent control of vocal acoustics by individual muscles. J Neurosci 35(42):14183–14194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vicario DS (1991) Contributions of syringeal muscles to respiration and vocalization in the zebra finch. J Neurobiol 22(1):63–73

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan F. Döppler.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This work describes research partially funded by National Council of Scientific and Technical Research (CONICET), National Agency of Science and Technology (ANPCyT), University of Buenos Aires (UBA) and National Institute of Health through R01-DC-012859.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Döppler, J.F., Bush, A., Goller, F. et al. From electromyographic activity to frequency modulation in zebra finch song. J Comp Physiol A 204, 209–217 (2018). https://doi.org/10.1007/s00359-017-1231-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-017-1231-3

Keywords

Navigation