Skip to main content
Log in

Attachment ability of the southern green stink bug Nezara viridula (Heteroptera: Pentatomidae)

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The present paper characterizes the attachment ability of males and females of Nezara viridula (Heteroptera: Pentatomidae) on artificial surfaces (smooth hydrophilic, smooth hydrophobic, different surface roughness) and on both leaf surfaces of the typical host plant species Vicia faba, using a centrifugal force tester and a traction force experiments set up. N. viridula is a serious crop pest in the world and shows attachment devices different from the so far investigated Heteroptera, with a tarsus characterized by distal smooth flexible pulvilli combined with claws and proximal ventral hairy pad. Notwithstanding the different body mass between the sexes, no difference was found between friction forces generated by females and males. Friction force was higher on hydrophilic surfaces than on hydrophobic ones and was lower on both sides of V. faba leaf compared with both hydrophilic and hydrophobic artificial smooth surfaces. On the surfaces with different roughness, the friction force values varied significantly, with the higher attachment ability on the surface with very high asperity size followed by the smooth surface. The lowest attachment was on the surfaces with intermediate asperity sizes. These results could be related to the specific combination of attachment devices of N. viridula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al Bitar L, Voigt D, Zebitz CPW, Gorb SN (2009) Tarsal morphology and attachment ability of the codling moth Cydia pomonella L. (Lepidoptera, Tortricidae) to smooth surfaces. J Insect Physiol 55:1029–1038

    Article  CAS  PubMed  Google Scholar 

  • Arnold JW (1974) Adaptive features on the tarsi of cockroaches (Insecta: Dictyoptera). Int J Insect Morphol Embryol 3:317–334

    Article  Google Scholar 

  • Betz O (2002) Performance and adaptive value of tarsal morphology in rove beetles of the genus Stenus (Coleoptera, Staphylinidae). J Exp Biol 205:1097–1113

    PubMed  Google Scholar 

  • Beutel R, Gorb SN (2001) Ultrastructure of attachment specializations of hexapods (Arthropoda): evolutionary patterns inferred from a revised ordinal phylogeny. J Zool Syst Evol Res 39:177–207

    Article  Google Scholar 

  • Beutel RG, Gorb SN (2006) A revised interpretation of the evolution of attachment structures in Hexapoda with special emphasis on Mantophasmatodea. Arthropod Syst Phylo 64:3–25

    Google Scholar 

  • Beutel RG, Gorb SN (2008) Evolutionary scenarios for unusual attachment devices of Phasmatodea and Mantophasmatodea (Insecta). Syst Entomol 33:501–510

    Article  Google Scholar 

  • Brainerd EL (1994) Adhesion force of ants on smooth surfaces. Am Zool 34:128

    Article  Google Scholar 

  • Bullock JMR, Federle W (2009) Division of labour and sex differences between fibrillar, tarsal adhesive pads in beetles: effective elastic modulus and attachment performance. J Exp Biol 212:1876–1888

    Article  PubMed  Google Scholar 

  • Clemente CJ, Federle W (2008) Pushing versus pulling: division of labour between tarsal attachment pads in cockroaches. Proc R Soc B 275:1329–1336

    Article  PubMed  PubMed Central  Google Scholar 

  • Colazza S, Bin F (1995) Efficiency of Trissolcus basalis (Hymenoptera: Scelionidae) as an egg parasitoid of Nezara viridula (Heteroptera: Pentatomidae) in Central Italy. Environ Entomol 24:1703–1707

    Article  Google Scholar 

  • Dai Z, Gorb SN, Schwarz U (2002) Roughness-dependent friction force of the tarsal claw system in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae). J Exp Biol 205:2479–2488

    PubMed  Google Scholar 

  • Dirks J-H, Federle W (2011) Fluid-based adhesion in insects—principles and challenges. Soft Matter 7:11047

    Article  CAS  Google Scholar 

  • Dixon AFG, Croghan PC, Gowing RP (1990) The mechanism by which aphids adhere to smooth surfaces. J Exp Biol 152:243–253

    Google Scholar 

  • Endlein T, Federle W (2008) Walking on smooth or rough ground: passive control of pretarsal attachment in ants. J Comp Physiol A 194:49–60

    Article  Google Scholar 

  • Endlein T, Federle W (2015) On heels and toes: How ants climb with adhesive pads and tarsal friction hair arrays. PLoS One 10:1–16. doi:10.1371/journal.pone.0141269

    Article  Google Scholar 

  • Federle W, Endlein T (2004) Locomotion and adhesion: dynamic control of adhesive surface contact in ants. Arthropod Struct Dev 33:67–75

    Article  PubMed  Google Scholar 

  • Federle W, Rohrseitz K, Hölldobler B (2000) Attachment forces of ants measured with a centrifuge: better ‘wax-runners’ have a poorer attachment to a smooth surface. J Exp Biol 203:505–512

    CAS  PubMed  Google Scholar 

  • Federle W, Brainerd EL, McMahon TA, Hölldobler B (2001) Biomechanics of the movable pretarsal adhesive organ in ants and bees. Proc Natl Acad Sci USA 98:6215–6220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Federle W, Riehle M, Curtis ASG, Full RJ (2002) An integrative study of insect adhesion mechanics and wet adhesion of pretarsal pads in ants. Integr Comp Biol 42:1100–1106

    Article  PubMed  Google Scholar 

  • Frantsevich L, Gorb SN (2002) Arcus as a tensegrity structure in the arolium of wasps (Hymenoptera: Vespidae). Zoology 105:225–237

    Article  PubMed  Google Scholar 

  • Frantsevich L, Gorb S (2004) Structure and mechanics of the tarsal chain in the hornet, Vespa crabro (Hymenoptera: Vespidae): implications on the attachment mechanism. Arthropod Struct Dev 33:77–89

    Article  PubMed  Google Scholar 

  • Frantsevich L, Ji A, Dai Z, Wang J, Frantsevich LA, Gorb SN (2008) Adhesive properties of the arolium of a lantern-fly, Lycorma delicatula (Auchenorrhyncha, Fulgoridae). J Insect Physiol 54:818–827

    Article  CAS  PubMed  Google Scholar 

  • Ghazi-Bayat A, Hasenfuss I (1980) Zur Herkunft der Adhäsionsflüssigkeit der tarsalen Haftlappen bei den Pentatomidae (Heteroptera). Zool Anz 204:13–18

    Google Scholar 

  • Gladun D, Gorb SN, Frantsevich LI (2009) Alternative tasks of the insect arolium with special reference to Hymenoptera. In: Gorb SN (ed) Functional surfaces in biology—adhesion related phenomena, vol 2. Springer, Heidelberg, pp 67–103

    Chapter  Google Scholar 

  • Gorb SN (2001) Attachment devices of insect cuticle. Kluwer Academic, Dordrecht

    Google Scholar 

  • Gorb S (2005) Uncovering insect stickiness: structure and properties of hairy attachment devices. Am Entomol 51:31–35

    Article  Google Scholar 

  • Gorb SN (2007) Visualisation of native surfaces by two-step molding. Microsc Today 15:44–46

    Google Scholar 

  • Gorb EV, Gorb SN (2002) Attachment ability of the beetle Chrysolina fastuosa on various plant surfaces. Entomol Exp Appl 105:13–28

    Article  Google Scholar 

  • Gorb SN, Gorb EV (2004) Ontogenesis of the attachment ability in the bug Coreus marginatus (Heteroptera, Insecta). J Exp Biol 207:2917–2924

    Article  PubMed  Google Scholar 

  • Gorb E, Gorb S (2009) Functional surfaces in the pitcher of the carnivorous plant Nepenthes alata: a cryo-SEM approach. In: Gorb SN (ed) Functional surfaces in biology—adhesion related phenomena, vol 2. Springer, Heidelberg, pp 205–238

    Chapter  Google Scholar 

  • Gorb SN, Scherge M (2000) Biological microtribology: anisotropy in frictional forces of orthopteran attachment pads reflects the ultrastructure of a highly deformable material. Proc R Soc Lond B 267:1239–1244

    Article  CAS  Google Scholar 

  • Gorb SN, Jiao Y, Scherge M (2000) Ultrastructural, architectural and mechanical properties of attachment pads in Tettigonia viridissima (Orthoptera, Tettigoniidae). J Comp Physiol A 186:821–831

    Article  CAS  PubMed  Google Scholar 

  • Gorb SN, Gorb EV, Kastner V (2001) Scale effects on the attachment pads and friction forces in syrphid flies (Diptera, Syrphidae). J Exp Biol 204:1421–1431

    CAS  PubMed  Google Scholar 

  • Gorb SN, Beutel RG, Gorb EV, Jiao Y, Kastner V, Niederegger S, Popov VL, Scherge M, Schwarz U, Vötsch W (2002) Structural design and biome- chanics of friction-based releasable attachment devices in insects. Integr Comp Biol 42:1127–1139

    Article  PubMed  Google Scholar 

  • Gorb E, Kastner V, Peressadko A, Arzt E, Gaume L, Rowe N, Gorb S (2004) Structure and properties of the glandular surface in the digestive zone of the pitcher in the carnivorous plant Nepenthes ventrata and its role in insect trapping and retention. J Exp Biol 207:2947–2963

    Article  PubMed  Google Scholar 

  • Gorb EV, Hosoda N, Miksch C, Gorb SN (2010) Slippery pores: anti-adhesive effect of nanoporous substrates on the beetle attachment system. J R Soc Interface 7:1571–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grohmann C, Blankenstein A, Koops S, Gorb SN (2014) Attachment of Galerucella nymphaeae (Coleoptera, Chrysomelidae) to surfaces with different surface energy. J Exp Biol 217:4213–4220. doi:10.1242/jeb.108902

    Article  PubMed  Google Scholar 

  • Heming BS (1972) Functional morphology of the pretarsus in larval Thysanoptera. Can J Zool 50:751–766

    Article  Google Scholar 

  • Inc StatSoft (2001) Statistica (Data Analysis Software System), Version 6. StatSoft Italia S.r.l, Italy

    Google Scholar 

  • Ishii S (1987) Adhesion of a leaf feeding ladybird Epilachna vigintioctomaculata (Coleoptera: Coccinellidae) on a vertically smooth surface. Appl Entomol Zool 22:222–228

    Google Scholar 

  • Jiao Y, Gorb SN, Scherge M (2000) Adhesion measured on the attachment pads of Tettigonia viridissima (Orthoptera, Insecta). J Exp Biol 203:1887–1895

    CAS  PubMed  Google Scholar 

  • Labonte D, Federle W (2013) Functionally different pads on the same foot allow control of attachment: Stick insects have load-sensitive “heel” pads for friction and shear-sensitive “toe” pads for adhesion. PLoS One 12:e81943

    Article  Google Scholar 

  • Lees AD, Hardie J (1988) The organs of adhesion in the aphid Megoura viciae. J Exp Biol 136:209–228

    Google Scholar 

  • Lüken D, Voigt D, Gorb SN, Zebitz CPW (2009) Die Tarsenmorphologie und die Haftfähigkeit des Schwarzen Batatenkäfers Cylas puncticollis (Boheman) auf glatten Oberflächen mit unterschiedlichen physiko-chemischen Eigenschaften. Mitt Dtsch Ges Allg Angew Entomol 17:109–113

    Google Scholar 

  • Nachtigall W (1974) Biological mechanisms of attachment. Springer, Berlin

    Book  Google Scholar 

  • Panizzi AR, McPherson JE, James DG, Javaheri M, McPherson RM (2000) Stink bugs (Pentatomidae). In: Schaefer CW, Panizzi AR (eds) Heteroptera of economic importance. CRC, Boca Raton, pp 421–474

    Google Scholar 

  • Peressadko AG, Gorb SN (2004) Surface profile and friction force generated by insects. In: First international industrial conference, Bionik 2004, pp 257–261

  • Prüm B, Bohn HF, Seidel R, Rubach S, Speck T (2013) Plant surfaces with cuticular folds and their replicas: influence of microstructuring and surface chemistry on the attachment of a leaf beetle. Acta Biomater 9:6360–6368

    Article  PubMed  Google Scholar 

  • Roth LM, Willis ER (1952) Tarsal structure and climbing ability of cockroaches. J Exp Biol 119:483–517

    Google Scholar 

  • Sokal RR, Rohlf FJ (1998) Biometry. W.E. Freeman and Company, New York

    Google Scholar 

  • Song Y, Dai Z, Wang Z, Ji A, Gorb SN (2016) The synergy between the insect-inspired claws and adhesive pads increases the attachment ability on various rough surfaces. Scientific Reports 6:N 26219

  • Southwood R (1986) Plant surfaces and insects—an overview. In: Juniper B, Southwood R (eds) Insects and the plant surface. Edward Arnold, London, pp 1–22

    Google Scholar 

  • Stork NE (1980) Experimental analysis of adhesion of Chrysolina polita (Chrysomelidae: Coleoptera) on a variety of surfaces. J Exp Biol 88:91–107

    Google Scholar 

  • Todd JW (1989) Ecology and behavior of Nezara viridula. Annu Rev Entomol 34:273–292

    Article  Google Scholar 

  • Tood JW, Herzog DC (1980) Sampling phytophagous pentatomidae on soybean. In: Kogan M, Herzog DC (eds) Sampling methods in soybean entomology. Springer, New York, pp 438–478

    Chapter  Google Scholar 

  • Voigt D, Gorb EV, Gorb SN (2007) Plant surface-bug interactions: Dicyphus errans stalking along trichomes. Arthropod-Plant Interact 1:221–243

    Article  Google Scholar 

  • Voigt D, Schuppert JM, Dattinger S, Gorb SN (2008) Sexual dimorphism in the attachment ability of the Colorado potato beetle Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) to rough substrates. J Insect Physiol 54:765–776

    Article  CAS  PubMed  Google Scholar 

  • Walker G, Yule AB, Ratcliffe J (1985) The adhesive organ of the blowfly, Calliphora vomitoria: a functional approach (Diptera: Calliphoridae). J Zool London 205:297–307

    Article  Google Scholar 

  • Zurek DB, Gorb SN, Voigt D (2017) Changes in tarsal morphology and attachment ability to rough surfaces during ontogenesis in the beetle Gastrophysa viridula (Coleoptera, Chrysomelidae). Arthropod Struct Dev 46:130–137

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The research has been performed thanks to the knowledge acquired during the Erasmus grant (Staff mobility for training 2014-15 (MR) and 2016-17 (GS)) at the Zoological Institute, Functional Morphology and Biomechanics, Christian Albrechts Universitat, Kiel (Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Rebora.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

359_2017_1177_MOESM1_ESM.tif

Centrifugal force experiments. Examples of plot of the Nezara viridula position over time with increasing rotation speed on hydrophilic and more hydrophobic surfaces (TIFF 146 kb)

359_2017_1177_MOESM2_ESM.tif

Traction force experiments. Examples of force–time curves used to estimate the maximal friction force obtained by Nezara viridula traction on hydrophilic and hydrophobic surface and on adaxial and abaxial Vicia faba leaf surface (TIFF 281 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salerno, G., Rebora, M., Gorb, E. et al. Attachment ability of the southern green stink bug Nezara viridula (Heteroptera: Pentatomidae). J Comp Physiol A 203, 601–611 (2017). https://doi.org/10.1007/s00359-017-1177-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-017-1177-5

Keywords

Navigation