Skip to main content
Log in

Sex differences and endocrine regulation of auditory-evoked, neural responses in African clawed frogs (Xenopus)

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Mating depends on the accurate detection of signals that convey species identity and reproductive state. In African clawed frogs, Xenopus, this information is conveyed by vocal signals that differ in temporal patterns and spectral features between sexes and across species. We characterized spectral sensitivity using auditory-evoked potentials (AEPs), commonly known as the auditory brainstem response, in males and females of four Xenopus species. In female X. amieti, X. petersii, and X. laevis, peripheral auditory sensitivity to their species own dyad—two, species-specific dominant frequencies in the male advertisement call—is enhanced relative to males. Males were most sensitive to lower frequencies including those in the male-directed release calls. Frequency sensitivity was influenced by endocrine state; ovariectomized females had male-like auditory tuning while dihydrotestosterone-treated, ovariectomized females maintained female-like tuning. Thus, adult, female Xenopus demonstrate an endocrine-dependent sensitivity to the spectral features of conspecific male advertisement calls that could facilitate mating. Xenopus AEPs resemble those of other species in stimulus and level dependence, and in sensitivity to anesthetic (MS222). AEPs were correlated with body size and sex within some species. A frequency following response, probably encoded by the amphibian papilla, might facilitate dyad source localization via interaural time differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ABR:

Auditory brainstem response

AEP:

Auditory-evoked potential

ANOVA:

Analysis of variance

DF:

Dominant frequency

DHT:

Dihydrotestosterone

F1:

Frequency 1

F2:

Frequency 2

FFR:

Frequency following response

MS222:

Tricane methanesulfonate

N1:

First negative AEP peak

OVX:

Ovariectomized

OVX + DHT:

Ovariectomized and given DHT

P1:

First positive AEP peak

P2:

Second positive AEP peak

SOD:

Species own dyad

TDT:

Tucker Davis Technologies

References

  • Aertsen AMHJ, Vlaming MSMG, Eggermont JJ, Johannesma PIM (1986) Directional hearing in the grassfrog (Rana temporaria L.). II. Acoustics and modelling of the auditory periphery. Hear Res 21:17–40. doi:10.1016/0378-5955(86)90043-2

    Article  PubMed  CAS  Google Scholar 

  • Akamatsu T, Okumura T, Novarini N, Yan HY (2002) Empirical refinements applicable to the recording of fish sounds in small tanks. J Acoust Soc Am 112:3073–3083. doi:10.1121/1.1515799

    Article  PubMed  Google Scholar 

  • Arch VS, Narins PM (2009) Sexual hearing: the influence of sex hormones on acoustic communication in frogs. Hear Res 252:15–20. doi:10.1016/j.heares.2009.01.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Balak KJ, Corwin JT, Jones JE (1990) Regenerated hair cells can originate from supporting cell progeny: evidence from phototoxicity and laser ablation experiments in the lateral line system. J Neurosci 10:2502–2512

    PubMed  CAS  Google Scholar 

  • Bauer EE, Klug A, Pollak GD (2002) Spectral determination of responses to species-specific calls in the dorsal nucleus of the lateral lemniscus. J Neurophysiol 88:1955–1967

    PubMed  Google Scholar 

  • Bidelman GM (2013) The role of the auditory brainstem in processing musically relevant pitch. Front Psychol 4:264. doi:10.3389/fpsyg.2013.00264

    Article  PubMed  PubMed Central  Google Scholar 

  • Bidelman GM, Krishnan A (2009) Neural correlates of consonance, dissonance, and the hierarchy of musical pitch in the human brainstem. J Neurosci 29:13165–13171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bones O, Hopkins K, Krishnan A, PC J (2014) Phase locked neural activity in the human brainstem predicts preference for musical consonance. Neuropsychologia 58:23–32

    Article  PubMed  PubMed Central  Google Scholar 

  • Brandt C, Andersen T, Christensen-Dalsgaard J (2008) Demonstration of a portable system for auditory brainstem recordings based on pure tone masking difference. In: 1st International symposium on auditory and audiological research, pp 241–247

  • Brittan-Powell EF, Lohr B, Hahn DC, Dooling RJ (2002) Auditory brainstem responses in the eastern screech owl: an estimate of auditory thresholds. J Acoust Soc Am 118:314–321

    Article  Google Scholar 

  • Bruzzone F, Do Rego J-L, Luu-The V, Pelletier G, Vallarino M, Vaudry H (2010) Immunohistochemical localization and biological activity of 3β-hydroxysteroid dehydrogenase and 5α-reductase in the brain of the frog, Rana esculenta, during development. J Chem Neuroanat 39:35–50. doi:10.1016/j.jchemneu.2009.08.001

    Article  PubMed  CAS  Google Scholar 

  • Buerkle NP, Schrode KM, Bee MA (2014) Assessing stimulus and subject influences on auditory evoked potentials and their relation to peripheral physiology in green treefrogs (Hyla cinerea). Comp Biochem Physiol A 178:68–81. doi:10.1016/j.cbpa.2014.08.005

    Article  CAS  Google Scholar 

  • Cacala KK, Price SJ, Dorcas ME (2007) A comparison of the effectiveness of recommended doses of MS-222 (tricaine methanesulfonate) and Orajel® (benzocaine) for amphibian anesthesia. Herpetol Rev 38:63–66

    Google Scholar 

  • Cakir Y, Strauch SM (2005) Tricaine (MS-222) is a safe anesthetic compound compared to benzocaine and pentobarbital to induce anesthesia in leopard frogs (Rana pipiens). Pharmacol Rep 57:467–474

    PubMed  Google Scholar 

  • Capranica RR, Moffat AJM (1980) Nonlinear properties of the peripheral auditory system of anurans. In: Popper A, Fay R (eds) Comparative studies of hearing in vertebrates, chap 5. Springer, New York, pp 139–165

  • Capranica RR, Moffat AJM (1983) Neurobehavioral correlates of sound communication in anurans. In: Ewert JP, Capranica RR, Ingle D (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 701–730. doi:10.1007/978-1-4684-4412-4_36

  • Chandrasekaran B, Kraus N (2010) The scalp-recorded brainstem response to speech: neural origins and plasticity. Psychophysiology 47:236–246. doi:10.1111/j.1469-8986.2009.00928.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Christensen-Dalsgaard J, Brandt C, Willis KL, Christensen CB, Ketten D, Edds-Walton P, Fay RR, Madsen PT, Carr CE (2012) Specialization for underwater hearing by the tympanic middle ear of the turtle, Trachemys scripta elegans. Proc Biol Soc 279:2816–2824. doi:10.1098/rspb.2012.0290

    Article  Google Scholar 

  • Corwin JT, Bullock TH, Schweitzer J (1982) The auditory brainstem response in five vertebrate classes. Electroencephalogr Clin Neurophysiol 54:629–641

    Article  PubMed  CAS  Google Scholar 

  • Dunia R, Narins PM (1989) Temporal resolution in frog auditory-nerve fibers. J Acoust Soc Am 85:1630–1638

    Article  PubMed  CAS  Google Scholar 

  • Edwards CJ, Alder TB, Rose GJ (2002) Auditory midbrain neurons that count. Nat Neurosci 5:934–936

    Article  PubMed  CAS  Google Scholar 

  • Elepfandt A, Eistetter I, Fleig A, Gunther E, Hainich M, Hepperle S, Traub B (2000) Hearing threshold and frequency discrimination in the purely aquatic frog Xenopus laevis (Pipidae): measurement by means of conditioning. J Exp Biol 203(Pt 23):3621–3629

    PubMed  CAS  Google Scholar 

  • Elliott TM, Christensen-Dalsgaard J, Kelley DB (2007) Tone and call responses of units in the auditory nerve and dorsal medullary nucleus of Xenopus laevis. J Comp Physiol A 193:1243–1257. doi:10.1007/s00359-007-0285-z

    Article  Google Scholar 

  • Forlano PM, Sisneros JA, Rohmann KN, Bass AH (2015) Neuroendocrine control of seasonal plasticity in the auditory and vocal systems of fish. Front Neuroendocrinol 37:129–145. doi:10.1016/j.yfrne.2014.08.002

    Article  PubMed  CAS  Google Scholar 

  • Fox JH (1995) Morphological correlates of auditory sensitivity in anuran amphibians. Brain Behav Evol 45:327–338

    Article  PubMed  CAS  Google Scholar 

  • Freedman EG, Ferragamo M, Simmons AM (1988) Masking patterns in the bullfrog (Rana catesbeiana) II: physiological effects. J Acoust Soc Am 84:2081–2091

    Article  PubMed  CAS  Google Scholar 

  • Frishkopf LS, Capranica RR, Goldstein MH Jr (1968) Neural coding in the bullfrog’s auditory system a teleological approach. Proc IEEE 56:969–980. doi:10.1109/PROC.1968.6448

    Article  Google Scholar 

  • Furman BLS, Bewick AJ, Harrison TL, Greenbaum E, Gvozdik V, Kusamba C, Evans BJ (2015) Pan-African phylogeography of a model organism, the African clawed frog ‘Xenopus laevis’. Mol Ecol 24:909–925. doi:10.1111/mec.13076

    Article  PubMed  CAS  Google Scholar 

  • Gall MD, Wilczynski W (2015) Hearing conspecific vocal signals alters peripheral auditory sensitivity. Proc R Soc B 282:1–8. doi:10.1098/rspb.2015.0749

    Article  Google Scholar 

  • Gerhardt HC (1978) Mating call recognition in the green treefrog (Hyla cinerea): the significance of some fine-temporal properties. J Exp Biol 74:59–73

    Google Scholar 

  • Gerhardt HC, Humfeld SC (2013) Pre-existing sensory biases in the spectral domain in frogs: empirical results and methodological considerations. J Comp Physiol A 199:151–157. doi:10.1007/s00359-012-0776-4

    Article  CAS  Google Scholar 

  • Gerhardt HC, Schwartz JJ (2001) Auditory tuning and frequency preferences in anurans. In: Ryan MJ (ed) Anuran communication. Smithsonian Institution Press, Washington, pp 73–85

    Google Scholar 

  • Gerhardt HC, Allan S, Schwartz JJ (1990) Female green treefrogs (Hyla cinerea) do not selectively respond to signals with a harmonic structure in noise. J Comp Physiol A 166:791–794

    Article  PubMed  CAS  Google Scholar 

  • Gerhardt HC, Martínez-Rivera CC, Schwartz JJ, Marshall VT, Murphy CG (2007) Preferences based on spectral differences in acoustic signals in four species of treefrogs (Anura: Hylidae). J Exp Biol 210:2990–2998

    Article  PubMed  Google Scholar 

  • Goense JB, Feng AS (2005) Seasonal changes in frequency tuning and temporal processing in single neurons in the frog auditory midbrain. J Neurobiol 65:22–36. doi:10.1002/neu.20172

    Article  PubMed  Google Scholar 

  • Gruber CJ, Tschugguel W, Schneeberger C, Huber JC (2002) Production and actions of estrogens. N Engl J Med 346(5):340–352. doi:10.1056/NEJMra000471

    Article  PubMed  CAS  Google Scholar 

  • Hainfeld CA, Boatright-Horowitz SL, Boatright-Horowitz SS, Megela Simmons A (1996) Discrimination of phase spectra in complex sounds by the bullfrog (Rana catesbeiana). J Comp Physiol A 179:75–78

    Article  PubMed  CAS  Google Scholar 

  • Hall JW (2007) New handbook for auditory evoked responses. Pearson, Boston

    Google Scholar 

  • Hillery CM (1984) Seasonality of two midbrain auditory responses in the treefrog, Hyla chrysoscelis. Copeia 1984:844–852. doi:10.2307/1445327

    Article  Google Scholar 

  • Hoke KL, Burmeister SS, Fernald RD, Rand AS, Ryan MJ, Wilczynski W (2004) Functional mapping of the auditory midbrain during mate call reception. J Neurosci 24:11264–11272

    Article  PubMed  CAS  Google Scholar 

  • Humes LE (1979) Perception of the simple difference tone (f2–f1). J Acoust Soc Am 66:1064–1074

    Article  PubMed  CAS  Google Scholar 

  • Jørgensen MB, Schmitz B, Christensen-Dalsgaard J (1991) Biophysics of directional hearing in the frog Eleutherodactylus coqui. J Comp Physiol A 168:223–232. doi:10.1007/BF00218414

    Article  Google Scholar 

  • Katbamna B, Brown JA, Collard M, Ide CF (2006a) Auditory brainstem responses to airborne sounds in the aquatic frog Xenopus laevis: correlation with middle ear characteristics. J Comp Physiol A 192:381–387

    Article  Google Scholar 

  • Katbamna B, Langerveld AJ, Ide CF (2006b) Aroclor 1254 impairs the hearing ability of Xenopus laevis. J Comp Physiol A 192:971–983

    Article  CAS  Google Scholar 

  • Keddy-Hector AC, Wilczynski W, Ryan MJ (1992) Call patterns and basilar papilla tuning in cricket frogs. II. Intrapopulation variation and allometry. Brain Behav Evol 39:238–246

    Article  PubMed  CAS  Google Scholar 

  • Kelley DB (1986) Neuroeffectors for vocalization in Xenopus laevis: hormonal regulation of sexual dimorphism. J Neurobiol 17:231–248. doi:10.1002/neu.480170307

    Article  PubMed  CAS  Google Scholar 

  • Klug A, Bauer EE, Hanson JT, Hurley L, Meitzen J, Pollak GD (2002) Response selectivity for species-specific calls in the inferior colliculus of Mexican free-tailed bats is generated by inhibition. J Neurophysiol 88:1941–1954

    PubMed  Google Scholar 

  • Klump GM, Benedix JH Jr, Gerhardt HC, Narins PM (2004) AM representation in green treefrog auditory nerve fibers: neuroethological implications for pattern recognition and sound localization. J Comp Physiol A 190:1011–1021

    Article  CAS  Google Scholar 

  • Krishnan A, Gandour JT (2009) The role of the auditory brainstem in processing linguistically-relevant pitch patterns. Brain Lang 110:135–148. doi:10.1016/j.bandl.2009.03.005

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishnan A, Gandour JT, Smalt CJ, Bidelman GM (2010) Language-dependent pitch encoding advantage in the brainstem is not limited to acceleration rates that occur in natural speech. Brain Lang 114:193–198

    Article  PubMed  PubMed Central  Google Scholar 

  • Lerud KD, Almonte FV, Kim JC, Large EW (2014) Mode-locking neurodynamics predict human auditory brainstem responses to musical intervals. Hear Res 308:41–49. doi:10.1016/j.heares.2013.09.010

    Article  PubMed  Google Scholar 

  • Lewis ER, Baird RA, Leverenz EL, Koyama H (1982) Inner ear: dye injection reveals peripheral origins of specific sensitivities. Science 215:1641–1643. doi:10.1126/science.6978525

    Article  PubMed  CAS  Google Scholar 

  • Lutz LB, Cole LM, Gupta MK, Kwist KW, Auchus RJ, Hammes SR (2001) Evidence that androgens are the primary steroids produced by Xenopus laevis ovaries and may signal through the classical androgen receptor to promote oocyte maturation. Proc Natl Acad Sci USA 98:13728–13733. doi:10.1073/pnas.241471598

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malmberg CF (1918) The perception of consonance and dissonance. Psychol Monogr 25:93–133

    Article  Google Scholar 

  • Mason M, Wang M, Narins P (2009) Structure and function of the middle ear apparatus of the aquatic frog (Xenopus laevis). Proc Inst Acoust 31:13–21

    PubMed  PubMed Central  Google Scholar 

  • Meenderink SWF, Kits M, Narins PM (2010) Frequency matching of vocalizations to inner-ear sensitivity along an altitudinal gradient in the coqui frog. Biol Lett 6:278–281

    Article  PubMed  PubMed Central  Google Scholar 

  • Mensah-Nyagan AG, Do Rego J-L, Feuilloley M, Marcual A, Lange C, Pelletier G, Vaudry H (1996) In vivo and in vitro evidence for the biosynthesis of testosterone in the telencephalon of the female frog. J Neurochem 67:413–422. doi:10.1046/j.1471-4159.1996.67010413.x

    Article  PubMed  CAS  Google Scholar 

  • Meyers JR, MacDonald RB, Duggan A, Lenzi D, Standaert DG, Corwin JT, Corey DP (2003) Lighting up the senses: FM1-43 loading of sensory cells through nonselective ion channels. J Neurosci 23:4054–4065

    PubMed  CAS  Google Scholar 

  • Mitchell C, Phillips DS, Trune DR (1989) Variables affecting the auditory brainstem response: audiogram, age, gender and head size. Hear Res 40:75–86

    Article  PubMed  CAS  Google Scholar 

  • Moreno-Gomez FN, Sueur J, Soto-Gamboa M, Penna M (2013) Female frog auditory sensitivity, male calls, and background noise: potential influences on the evolution of a peculiar matched filter. Biol J Linn Soc 110:814–827. doi:10.1111/bij.12156

    Article  Google Scholar 

  • Narins PM, Capranica RR (1976) Sexual differences in the auditory system of the tree frog Eleutherodactylus coqui. Science 192:378–380. doi:10.1126/science.1257772

    Article  PubMed  CAS  Google Scholar 

  • Narins PM, Capranica RR (1980) Neural adaptations for processing the two-note call of the Puerto Rican treefrog, Eleutherodactylus coqui. Brain Behav Evol 17:48–66

    Article  PubMed  CAS  Google Scholar 

  • Narins PM, Wagner I (1989) Noise susceptibility and immunity of phase locking in amphibian auditory-nerve fibers. J Acoust Soc Am 85:1255–1265

    Article  PubMed  CAS  Google Scholar 

  • Narins PM, Ehret G, Tautz J (1988) Accessory pathway for sound transfer in a neotropical frog. Proc Natl Acad Sci USA 85:1508–1512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Penna M, Capranica RR, Somers J (1992) Hormone-induced vocal behavior and midbrain auditory sensitivity in the green treefrog, Hyla cinerea. J Comp Physiol A 170:73–82

    Article  PubMed  CAS  Google Scholar 

  • Perez J, Cohen MA, Kelley DB (1996) Androgen receptor mRNA expression in Xenopus laevis CNS: sexual dimorphism and regulation in laryngeal motor nucleus. J Neurobiol 30:556–568. doi:10.1002/(SICI)1097-4695(199608)30:4<556:AID-NEU10>3.0.CO;2-D

    Article  PubMed  CAS  Google Scholar 

  • Phan ML, Pytte CL, Vicario DS (2006) Early auditory experience generates long-lasting memories that may subserve vocal learning in songbirds. Proc Natl Acad Sci USA 103:1088–1093. doi:10.1073/pnas.0510136103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Picker M (1983) Hormonal induction of the aquatic phonotactic response of Xenopus. Behaviour 84:74–90. doi:10.1163/156853983X00291

    Article  Google Scholar 

  • Pinder AC, Palmer AR (1983) Mechanical properties of the frog ear: vibration measurements under free- and closed-field acoustic conditions. Proc R Soc Lond B Biol Sci 219:371–396

    Article  PubMed  CAS  Google Scholar 

  • Portfors CV, Roberts PD, Jonson K (2009) Over-representation of species-specific vocalizations in the awake mouse inferior colliculus. Neuroscience 162:286–300

    Article  CAS  Google Scholar 

  • Ramlochansingh C, Branoner F, Chagnaud BP, Straka H (2014) Efficacy of tricaine methanesulfonate (MS-222) as an anesthetic agent for blocking sensory-motor responses in Xenopus laevis tadpoles. PLoS One e101606. doi:10.1371/journal.pone.0101606

  • Remage-Healey L, Dong SM, Chao A, Schlinger BA (2012) Sex-specific, rapid neuroestrogen fluctuations and neurophysiological actions in the songbird auditory forebrain. J Neurophysiol 107(6):1621–1631. doi:10.1152/jn.00749.2011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rhodes HJ, Yu HJ, Yamaguchi A (2007) Xenopus vocalizations are controlled by a sexually differentiated hindbrain central pattern generator. J Neurosci 27:1485–1497. doi:10.1523/JNEUROSCI.4720-06.2007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rose GJ, Capranica RR (1985) Sensitivity to amplitude modulated sounds in the anuran auditory nervous system. J Neurophysiol 53:446–465

    PubMed  CAS  Google Scholar 

  • Ruggero M, Robles L, Rich N, Recio A (1992) Basilar membrane responses to two-tone and broadband stimuli. Philos Trans R Soc Lond B Biol Sci 336:307–315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schoffelen RLM, Segenhout JM, van Dijk P (2009) Tuning of the tectorial membrane in the basilar papilla of the northern leopard frog. J Assoc Res Otolaryngol 10:309–320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schrode KM, Buerkle NP, Brittan-Powell EF, Bee MA (2014) Auditory brainstem responses in Cope’s gray treefrog (Hyla chrysoscelis): effects of frequency, level, sex and size. J Comp Physiol A 200:221–238. doi:10.1007/s00359-014-0880-8

    Article  Google Scholar 

  • Schumacher JW, Schneider DM, Woolley SMN (2011) Anesthetic state modulates excitability but not spectral tuning or neural discrimination in single auditory midbrain neurons. J Neurophysiol 106:500–514

    Article  PubMed  PubMed Central  Google Scholar 

  • Seaman RL (1991) Method to record evoked potentials from the frog eighth nerve. Hear Res 51:301–305. doi:10.1016/0378-5955(91)90046-C

    Article  PubMed  CAS  Google Scholar 

  • Shapiro SS, Wilk MB, Chen HJ (1968) A comparative study of various tests for normality. J Am Stat Assoc 63(324):1343–1372

    Article  Google Scholar 

  • Shen J-X, Xu Z-M, Yu Z-L, Wang S, Zheng D-Z, Fan S-C (2011) Ultrasonic frogs show extraordinary sex differences in auditory frequency sensitivity. Nat Commun 2:1–5. doi:10.1038/ncomms1339

    Google Scholar 

  • Simmons AM (1988) Selectivity for harmonic structure in complex sounds by the green treefrog (Hyla cinerea). J Comp Physiol A 162:397–403

    Article  PubMed  CAS  Google Scholar 

  • Simmons AM (2013) “To ear is human, to forgive is divine”: Bob Capranica’s legacy to auditory neuroethology. J Comp Physiol A 199:169–182. doi:10.1007/s00359-012-0786-2

    Article  Google Scholar 

  • Simmons AM, Bean ME (2000) Perception of mistuned harmonics in complex sounds by the bullfrog (Rana catesbeiana). J Comp Psychol 114:167–173. doi:10.1037/0735-7036.114.2.167

    Article  PubMed  CAS  Google Scholar 

  • Sisneros JA, Forlano PM, Deitcher DL, Bass AH (2004) Steroid-dependent auditory plasticity leads to adaptive coupling of sender and receiver. Science 205:404–407

    Article  CAS  Google Scholar 

  • Skoe E, Kraus N (2010) Auditory brainstem response to complex sounds: a tutorial. Ear Hear 31:302–324

    Article  PubMed  PubMed Central  Google Scholar 

  • Smotherman MS, Narins PM (1998) Effect of temperature on electrical resonance in leopard frog saccular hair cells. J Neurophysiol 79:312–321

    PubMed  CAS  Google Scholar 

  • Smotherman MS, Narins PM (2000) Hair cells, hearing and hopping: a field guide to hair cell physiology in the frog. J Exp Biol 203:2237–2246

    PubMed  CAS  Google Scholar 

  • Tobias ML, Barnard C, O’Hagan R, Horng SH, Rand M, Kelley DB (2004) Vocal communication between male Xenopus laevis. Anim Behav 67:353–365. doi:10.1016/j.anbehav.2003.03.016

    Article  PubMed  PubMed Central  Google Scholar 

  • Tobias ML, Corke A, Korsh J, Yin D, Kelley DB (2010) Vocal competition in male Xenopus laevis frogs. Behav Ecol Sociobiol 64:1791–1803. doi:10.1007/s00265-010-0991-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Tobias ML, Evans BJ, Kelley DB (2011) Evolution of advertisement calls in African clawed frogs. Behaviour 148:519–549. doi:10.1163/000579511X569435

    Article  PubMed  PubMed Central  Google Scholar 

  • Tobias ML, Korsh J, Kelley DB (2014) Evolution of male and female release calls in African clawed frogs. Behaviour 151:1313–1334. doi:10.1163/1568539X-00003186

    Article  Google Scholar 

  • Van Dijk P, Mason MJ, Schoffelen RLM, Narins PM, Meenderink SWF (2011) Mechanics of the frog ear. Hear Res 273:46–58

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaudry H, Do Rego J-L, Burel D, Luu-The V, Pelletier G, Vaudry D, Tsutsui K (2011) Neurosteroid biosynthesis in the brain of amphibians. Front Neuroendocrinol 2:1–9. doi:10.3389/fendo.2011.00079

    Google Scholar 

  • Vélez A, Gall MD, Lucas JR (2015) Seasonal plasticity in auditory processing of the envelope and temporal fine structure of sounds in three songbirds. Anim Behav 103:52–63. doi:10.1016/j.anbehav.2015.01.036

    Article  Google Scholar 

  • Vignal C, Kelley DB (2007) Significance of temporal and spectral acoustic cues for sexual recognition in Xenopus laevis. Proc R Soc Lond B Biol Sci 274:479–488. doi:10.1098/rspb.2006.3744

    Article  Google Scholar 

  • Vigny C (1979) The mating calls of 12 species and sub-species of the genus Xenopus (Amphibia: Anura). J Zool Lond 188:103–122. doi:10.1111/j.1469-7998.1979.tb03394.x

    Article  Google Scholar 

  • Wetzel DM, Kelley DB (1983) Androgen and gonadotropin effects on male mate calls in South African clawed frogs, Xenopus laevis. Horm Behav 17:388–404. doi:10.1016/0018-506X(83)90048-X

    Article  PubMed  CAS  Google Scholar 

  • Wilczynski W, Zakon HH, Brenowitz EA (1984) Acoustic communication in spring peepers. J Comp Physiol A 155:577–584. doi:10.1007/BF00610843

    Article  Google Scholar 

  • Wilczynski W, Keddy-Hector AC, Ryan MJ (1992) Call patterns and basilar papilla tuning in cricket frogs. I. Differences among populations and between sexes. Brain Behav Evol 39:229–237. doi:10.1159/000114120

    Article  PubMed  CAS  Google Scholar 

  • Wilczynski W, Rand AS, Ryan MJ (2001) Evolution of calls and auditory tuning in the Physalaemus pustulosus species group. Brain Behav Evol 58:137–151

    Article  PubMed  CAS  Google Scholar 

  • Witte K, Ryan MJ, Wilczynski W (2001) Changes in the frequency structure of a mating call decrease its attractiveness to females in the cricket frog Acris crepitans blanchardi. Ethology 107:685–699

    Article  Google Scholar 

  • Woolley SMN, Portfors CV (2013) Conserved mechanisms of vocalization coding in mammalian and songbird auditory midbrain. Hear Res 305:45–56. doi:10.1016/j.heares.2013.05.005

    Article  PubMed  Google Scholar 

  • Worden FG, Marsh JT (1968) Frequency-following (microphonic-like) neural responses evoked by sound. Electroencephalogr Clin Neurophysiol 25:42–52. doi:10.1016/0013-4694(68)90085-0

    Article  PubMed  CAS  Google Scholar 

  • Wright A, Rivera J, Hulse S, Shyan M, Neiworth J (2000) Music perception and octave generalization in rhesus monkeys. J Exp Psychol Gen 129:291–307. doi:10.1037/0096-3445.129.3.291

    Article  PubMed  CAS  Google Scholar 

  • Yager DD (1992) Underwater acoustic communication in the African pipid frog Xenopus borealis. Bioacoustics 4:1–24. doi:10.1080/09524622.1992.9753201

    Article  Google Scholar 

  • Yoder KM, Vicario DS (2012) To modulate and be modulated: estrogenic influences on auditory processing of communication signals within a socio-neuro-endocrine framework. Behav Neurosci 126:17–28. doi:10.1037/a0026673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoder KM, Phan ML, Lu K, Vicario DS (2015) He hears, she hears: are there sex differences in auditory processing? Dev Neurobiol 75:302–314. doi:10.1002/dneu.22231

    Article  PubMed  Google Scholar 

  • Zakon HH, Wilczynski W (1988) The physiology of the anuran eighth nerve. In: Fritzsch B, Ryan MJ, Wilczynski W, Hetherington TE, Walkowiak W (eds) The evolution of the amphibian auditory system. Wiley, New York, pp 125–155

    Google Scholar 

  • Zornik E, Kelley DB (2011) A neuroendocrine basis for the hierarchical control of frog courtship vocalizations. Front Neuroendocrinol 32:353–366. doi:10.1016/j.yfrne.2010.12.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This research involved animals that were cared for and treated in accordance with Columbia University’s IACUC requirements. The authors declare that they have no conflict of interest. Charles H. Revson Foundation (ICH), National Institutes of Health GM103266 (ICH), National Institutes of Health NS28634 (DBK), National Institutes of Health DC009810 (SMNW). Jakob Christensen-Daalsgard, Catherine Carr, Caitlin Baxter, Hilary Bierman (AEP suggestions and training); Martha Tobias (collection and analysis of call features); David Schneider (MATLAB code).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian C. Hall.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hall, I.C., Woolley, S.M.N., Kwong-Brown, U. et al. Sex differences and endocrine regulation of auditory-evoked, neural responses in African clawed frogs (Xenopus). J Comp Physiol A 202, 17–34 (2016). https://doi.org/10.1007/s00359-015-1049-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-015-1049-9

Keywords

Navigation