Skip to main content
Log in

Colour constancy in insects

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Colour constancy is the perceptual phenomenon that the colour of an object appears largely unchanged, even if the spectral composition of the illuminating light changes. Colour constancy has been found in all insect species so far tested. Especially the pollinating insects offer a remarkable opportunity to study the ecological significance of colour constancy since they spend much of their adult lives identifying and choosing between colour targets (flowers) under continuously changing ambient lighting conditions. In bees, whose colour vision is best studied among the insects, the compensation provided by colour constancy is only partial and its efficiency depends on the area of colour space. There is no evidence for complete ‘discounting’ of the illuminant in bees, and the spectral composition of the light can itself be used as adaptive information. In patchy illumination, bees adjust their spatial foraging to minimise transitions between variously illuminated zones. Modelling allows the quantification of the adaptive benefits of various colour constancy mechanisms in the economy of nature. We also discuss the neural mechanisms and cognitive operations that might underpin colour constancy in insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arnold SEJ, Chittka L (2012) Illumination preference, illumination constancy and colour discrimination by bumblebees in an environment with patchy light. J Exp Biol 215:2173–2180

    Article  PubMed  Google Scholar 

  • Balkenius A, Kelber A (2004) Colour constancy in diurnal and nocturnal hawkmoths. J Exp Biol 207:3307–3316. doi:10.1242/jcb.01158

    Article  PubMed  Google Scholar 

  • Bloj MG, Kersten D, Hurlbert AC (1999) Perception of three-dimensional shape influences colour perception through mutual illumination. Nature 402:877–879

    CAS  PubMed  Google Scholar 

  • Brill MH (1995) The relation between the color of the illuminant and the color of the illuminated object––a commentary. Color Res Appl 20:70–72

    Article  Google Scholar 

  • Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Ann Rev Entomol 46:471–510

    Article  CAS  Google Scholar 

  • Buchsbaum G (1980) A spatial processor model for object colour perception. J Franklin Inst 310:1–26

    Article  Google Scholar 

  • Byrne A, Hilbert DR (2003) Color realism and color science. Behav Brain Sci 26:3–64

    PubMed  Google Scholar 

  • Chittka L (1996) Does bee colour vision predate the evolution of flower colour? Naturwiss 83:136–138

    Article  CAS  Google Scholar 

  • Chittka L, Menzel R (1992) The evolutionary adaptation of flower colors and the insect pollinators’ color vision systems. J Comp Physiol A 171:171–181

    Article  Google Scholar 

  • Chittka L, Niven J (2009) Are bigger brains better? Curr Biol 19:R995–R1008

    Article  CAS  PubMed  Google Scholar 

  • Chittka L, Beier W, Hertel H, Steinmann E, Menzel R (1992) Opponent colour coding is a universal strategy to evaluate the photoreceptor inputs in Hymentoptera. J Comp Physiol A 170:545–563

    CAS  PubMed  Google Scholar 

  • Chittka L, Stelzer RJ, Stanewsky R (2013) Daily changes in ultraviolet light levels can synchronize the circadian clock of bumblebees (Bombus terrestris). Chronobiol Int 30:434–442

    Article  PubMed  Google Scholar 

  • Clarke S, Walsh V, Schoppig A, Assal G, Cowey A (1998) Colour constancy impairments in patients with lesions of the prestriate cortex. Exp Brain Res 123:154–158

    Article  CAS  PubMed  Google Scholar 

  • Daw N (1968) Colour coded ganglion cells in the goldfish retina: extension of their receptive fields by means of new stimuli. J Physiol 197:567–592

    CAS  PubMed Central  PubMed  Google Scholar 

  • de Souza J, Hertel H, Ventura DF, Menzel R (1992) Response properties of stained monopolar cells in the honeybee lamina. J Comp Physiol A 170:267–274

    Article  Google Scholar 

  • Döring TF, Chittka L (2007) Visual ecology of aphids––a critical review on the role of colours in host finding. Arthropod Plant Interact 1:3–16

    Article  Google Scholar 

  • Dyer AG (1998) The colour of flowers in spectrally variable illumination and insect pollinator vision. J Comp Physiol A 183:203–212

    Article  Google Scholar 

  • Dyer AG (1999) Broad spectral sensitivities in the honeybee’s photoreceptors limit colour constancy. J Comp Physiol A 185:445–453

    Article  Google Scholar 

  • Dyer AG (2006) Bumblebees directly perceive variations in the spectral quality of illumination. J Comp Physiol A 192:333–338

    Article  Google Scholar 

  • Dyer AG, Chittka L (2004) Biological significance of discriminating between similar colours in spectrally variable illumination: bumblebees as a study case. J Comp Physiol A 190:105–114

    Article  CAS  Google Scholar 

  • Ebner M (2007) Color constancy. Wiley-IS&T series in imaging science and technology. John Wiley, Chichester

    Google Scholar 

  • Ehmer B, Gronenberg W (2002) Segregation of visual input to the mushroom bodies in the honeybee (Apis mellifera). J Comp Neurol 451:362–373. doi:10.1002/cne.10355

    Article  PubMed  Google Scholar 

  • Endler JA (1993) The color of light in forests and its implications. Ecol Monogr 63(1):1–27

    Article  Google Scholar 

  • Faruq S, McOwan PW, Chittka L (2013) The biological significance of color constancy: An agent-based model with bees foraging from flowers under varied illumination. J Vis 13. doi:10.1167/13.10.10

  • Fischbach KF (1979) Simultaneous and successive colour contrast expressed in “slow” phototactic behaviour of walking Drosophila melanogaster. J Comp Physiol 130:161–171

    Article  Google Scholar 

  • Foster DH, Nascimento SMC (1994) Relational color constancy from invariant cone-excitation ratios. Proc R Soc B 257:115–121. doi:10.1098/rspb.1994.0103

    Article  CAS  PubMed  Google Scholar 

  • Gegenfurtner KR, Kiper DC (2003) Color vision. Annu Rev Neurosci 26:181–206

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez RC, Wintz PA (1977) Digital image processing. In: Applied mathematics and computation no. 13. Advanced Book Program. Addison-Wesley Pub. Co., Reading

  • Gumbert A, Kunze J, Chittka L (1999) Floral colour diversity in plant communities, bee colour space and a null model. Proc R Soc B 266:1711–1716

    Article  PubMed Central  Google Scholar 

  • Helson H (1964) Adaptation-level theory. Harper & Row, New York

    Google Scholar 

  • Hertel H (1980) Chromatic properties of identified interneurons in the optic lobes of the bee. J Comp Physiol 137:215–231

    Article  Google Scholar 

  • Hertel H, Maronde U (1987) The physiology and morphology of centrally projecting visual interneurons in the honeybee brain. J Exp Biol 133:301–315

    Google Scholar 

  • Hilbert D (1992) What is color vision? Philos Stud 68:351–370

    Article  Google Scholar 

  • Hurlbert AC (1998) Computational models of colour constancy. In: V. Walsh JK (ed) Perceptual constancy: why things look as they do. Cambridge University Press, Cambridge

    Google Scholar 

  • Ives HE (1912) The relation between the color of the illuminant and the color of the illuminated object. Trans Illumin Eng Soc 7:62–72

    Google Scholar 

  • Jameson D, Hurvich LM (1989) Essay concerning color constancy. Ann Rev Psychol 40:1–22

    Article  CAS  Google Scholar 

  • Kelber A, Balkenius A, Warrant EJ (2002) Scotopic colour vision in nocturnal hawkmoths. Nature 419:922–925

    Article  CAS  PubMed  Google Scholar 

  • Kien J, Menzel R (1977) Chromatic properties of interneurons in the optic lobes of the bee. II. Narrow band and colour opponent neurons. J Comp Physiol A 113:35–53

    Article  Google Scholar 

  • Kinoshita M, Arikawa K (2000) Colour constancy of the swallowtail butterfly Papilio xuthus. J Exp Biol 203:3521–3530

    CAS  PubMed  Google Scholar 

  • Kühn A (1927) Über den Farbensinn der Bienen. Z Vergl Physiol 5:762–800

    Article  Google Scholar 

  • Land EH (1977) The retinex theory of color vision. Sci Am 237:108–128

    Article  CAS  PubMed  Google Scholar 

  • Land EH (1986) Recent advances in retinex theory. Vis Res 26:7–21

    Article  CAS  PubMed  Google Scholar 

  • Land EH, McCann JJ (1971) Lightness and retinex theory. J Opt Soc Am 61:1–11

    Article  CAS  PubMed  Google Scholar 

  • Laughlin S (1981) A simple coding procedure enhances a neuron’s information capacity. Z Naturforsch C 36:910–912

    CAS  PubMed  Google Scholar 

  • Laughlin SB (1989) The role of sensory adaptation in the retina. J Exp Biol 146:39–62

    CAS  PubMed  Google Scholar 

  • Lotto RB, Chittka L (2005) Seeing the light: illumination as a contextual cue to color choice behavior in bumblebees. Proc Natl Acad Sci USA 102:3852–3856

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lotto RB, Wicklein M (2005) Bees encode behaviorally significant spectral relationships in complex scenes to resolve stimulus ambiguity. Proc Natl Acad Sci USA 102:16870–16874. doi:10.1073/pnas.0503773102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lunau K, Wacht S, Chittka L (1996) Colour choices of naive bumble bees and their implications for colour perception. J Comp Physiol A 178:477–489

    Article  Google Scholar 

  • Maloney LT (1984) Computational approaches to color constancy. PhD Dissertation, Stanford University

  • Maloney LT, Wandall B (1986) Color constancy: a method for recovering surface spectral reflectance. J Opt Soc Am 3:29–33

    Article  CAS  Google Scholar 

  • Mather G (2006) Foundations of Perception. Psychology Press, Hove

    Google Scholar 

  • Mazokhin-Porshnyakov GA (1966) Recognition of coloured objects by insects. In: Bernhard CG (ed) The functional organization of the compound eye. Pergamon Press, Oxford, pp 163–170

    Google Scholar 

  • Mazokhin-Porshnyakov GA (1969) Insect vision. Plenum Press, New York (trans: Masironi R, Masironi L)

    Google Scholar 

  • Menzel R, Backhaus W (1991) Colour vision in insects. In: Gouras P (ed) The perception of colour, vol 6., Vision and visual dysfunctionMacmillan Press, London, pp 262–293

    Google Scholar 

  • Michael CR (1978) Color vision mechanisms in monkey striate cortex: simple cells with dual opponent-color receptive fields. J Neurophysiol 41:1233–1249

    CAS  PubMed  Google Scholar 

  • Moericke V (1950) Ueber das Farbensehen der Pfirsichblattlaus (Myzodes persicae Sulz.). Z Tierpsychol 7(2):265–274

    Article  Google Scholar 

  • Mota T, Gronenberg W, Giurfa M, Sandoz J-C (2013) Chromatic processing in the anterior optic tubercle of the honey bee brain. J Neurosci 33:4–16

    Article  CAS  PubMed  Google Scholar 

  • Nascimento SMC, Foster DH (1997) Detecting natural changes of cone-excitation ratios in simple and complex coloured images. Proc R Soc B-Biol Sci 264(1386):1395-1402

    Article  CAS  Google Scholar 

  • Neumeyer C (1980) Simultaneous color contrast in the honey bee. J Comp Physiol 139:165–176

    Article  Google Scholar 

  • Neumeyer C (1981) Chromatic adaptation in the honeybee: successive color contrast and color constancy. J Comp Physiol 144:543–553

    Article  Google Scholar 

  • Neumeyer C (1991) Evolution of colour vision. In: Cronly-Dillon J (ed) Vision and visual dysfunction, vol 2. Macmillan Press, Houndsmills, pp 284–305

    Google Scholar 

  • Neumeyer C (1998) Comparative aspects of color constancy. In: Walsh V, Kulikowski J (eds) Perceptual Constancy. Cambridge University Press, Cambridge

    Google Scholar 

  • Osorio D, Marshall NJ, Cronin TW (1997) Stomatopod photoreceptor spectral tuning as an adaptation for color constancy in water. Vis Res 37:3299–3309

    Article  CAS  PubMed  Google Scholar 

  • Paulk AC, Dacks AM, Phillips-Portillo J, Fellous J-M, Gronenberg W (2009a) Visual processing in the central bee brain. J Neurosci 29:9987–9999

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paulk AC, Dacks AM, Gronenberg W (2009b) Color processing in the medulla of the bumblebee (Apidae: Bombus impatiens). J Comp Neurol 513:441–456. doi:10.1002/cne.21993

    Article  PubMed  Google Scholar 

  • Peitsch D, Fietz A, Hertel H, de Souza J, Ventura DF, Menzel R (1992) The spectral input systems of hymenopteran insects and their receptor-based colour vision. J Comp Physiol A 170:23–40

    Article  CAS  PubMed  Google Scholar 

  • Ribi WA (1975) The neurons of the first optic ganglion of the bee (Apis mellifera). Adv Anat Embryol Cell Biol 50:1–43

    CAS  PubMed  Google Scholar 

  • Riehle A (1981) Color opponent neurons of the honeybee in a heterochromatic flicker test. J Comp Physiol 142:81–88

    Article  Google Scholar 

  • Rushton WA (1972) Pigments and signals in colour vision. J Physiol 220:1–31

    Google Scholar 

  • Skorupski P, Chittka L (2011) Is colour cognitive? Opt Laser Technol 43:251–260

    Article  Google Scholar 

  • Smithson HE (2005) Sensory, computational and cognitive components of human colour constancy. Phil Trans R Soc B 360:1329–1346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • von Campenhausen C (1986) Photoreceptors, lightness constancy and color vision. Naturwiss 73:674–675

    Article  Google Scholar 

  • von Frisch K (1914) Der Farbensinn und Formensinn der Biene. Zool Jb (Physiol) 37:1–238

    Google Scholar 

  • von Helmholtz H (1896) Handbuch der physiologischen Optik, vol 2. Voss, Hamburg

    Google Scholar 

  • von Helversen O (1972) Zur spektralen Unterschiedsempfindlichkeit der Honigbiene. J Comp Physiol 80:439–472

    Article  Google Scholar 

  • von Holst E (1957) Aktive Leistungen der menschlichen Gesichtswahrnehmung. Studium Generale 10:231–241

    Google Scholar 

  • von Kries J (1905) Die Gesichtsempfindungen. In: Nagel W (ed) Handbuch der Physiologie des Menschen, vol 3. Vieweg, Braunschweig, pp 109–282

    Google Scholar 

  • Weiss MR (1991) Floral colour changes as cues for pollinators. Nature 354:227–229

    Article  Google Scholar 

  • Werner A (1990) Farbkonstanz bei der Honigbiene, Apis mellifera. Untersuchung der zugrundeliegenden Mechanismen kontextbezogener Farbkodierung, sowie eine Studie der Farbkonstanzleistung des Menschen unter identischen Versuchsbedingungen. PhD Dissertation, Free University of Berlin

  • Werner A, Menzel R, Wehrhahn C (1988) Color constancy in the honeybee. J Neurosci 8:156–159

    CAS  PubMed  Google Scholar 

  • Werner A, Smith V, Pokorny J, Kremers J, Greenlee M (2005) Psychophysical correlates of identified physiological processes in the human visual system. In: Kremer JP (ed) The Primate visual system. Wiley & Sons, New York, pp 311–349

    Google Scholar 

  • Wicklein M, Lotto RB (2006) Bees use relational learning rules in colour learning tasks. Perception 35:140–141

    Google Scholar 

  • Wolff EK, Bogomolni RA, Scherrer P, Hess B, Stoeckenius W (1986) Color discrimination in halobacteria: spectroscopic characterization of a second sensory receptor covering the blue-green region of the spectrum. Proc Natl Acad Sci USA 83:7272–7276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Worthey JA, Brill MH (1986) Heuristic analysis of von Kries color constancy. J Opt Soc Am A 3:1708–1712

    Article  CAS  PubMed  Google Scholar 

  • Wyszecki G, Stiles WS (1982) Color science: concepts and methods, quantitative data and formulae, vol 2. Wiley, New York

    Google Scholar 

  • Yang EC, Lin HC, Hung YS (2004) Patterns of chromatic information processing in the lobula of the honeybee, Apis mellifera L. J Insect Physiol 50:913–925

    Article  CAS  PubMed  Google Scholar 

  • Zaidi Q, Spehar B, DeBonet J (1997) Color constancy in variegated scenes: role of low-level mechanisms in discounting illumination changes. J Opt Soc Am A 14:2608–2621

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Chittka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chittka, L., Faruq, S., Skorupski, P. et al. Colour constancy in insects. J Comp Physiol A 200, 435–448 (2014). https://doi.org/10.1007/s00359-014-0897-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-014-0897-z

Keywords

Navigation